Skip to main content

Advertisement

Log in

Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Air pollutants are increasingly emitted into the atmosphere because of the high dependency of humans on fossil-derived fuels. Wind speed and direction assisted high dispersibility and uncontrolled nature of air pollution across geo-/demographical borders, making it one of the major global concerns. Besides climate change, air pollution has been found to be associated with various diseases, such as cancer. Lung cancer, which is the world’s most common type of cancer, has been found to be associated with traffic-related air pollution. Research and political efforts have been taken to explore green/renewable energy sources. However, these efforts at the current intensity cannot cope with the increasing need for fossil fuels. More specifically, political tensions such as the Russian-Ukraine war, economic tension (e.g., China-USA economic tensions), and other issues (e.g., pandemic, higher inflation rate, and poverty) significantly hindered phasing out fossil fuels. In this context, an increasing global population will be exposed to traffic-related air pollution, which justifies the current uptrend in the number of lung cancer patients. To combat this health burden, novel treatments with higher efficiency and specificity must be designed. One of the potential “life changer” options is microRNA (miRNA)-based therapy to target the expression of oncogenic genes. That said, this review discusses the association of traffic-related air pollution with lung cancer, the changes in indigenous miRNAs in the body during lung cancer, and the current status of miRNA therapeutics for lung cancer treatment. We believe that the article will significantly appeal to a broad readership of oncologists, environmentalists, and those who work in the field of (bio)energy. It may also gain the policymakers’ attention to establish better health policies and regulations about air pollution, for example, by promoting (bio)fuel exploration, production, and consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

N/A.

References

  1. James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., Abbastabar, H., Abd-Allah, F., Abdela, J., & Abdelalim, A. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392, 1789–1858.

    Article  Google Scholar 

  2. Zhou, M., Wang, H., Zeng, X., Yin, P., Zhu, J., Chen, W., Li, X., Wang, L., Wang, L., & Liu, Y. (2019). Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 394, 1145–1158.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71, 209–249.

    PubMed  Google Scholar 

  4. National Cancer Institute. (NCI). (2023, February 17). Non-small cell lung cancer treatment (PDQ®)–Health professional version. Retrieved Jun 12, 2023, from https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq#top

    Google Scholar 

  5. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., & Adjei, A. A. (2008). Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clinic Proceedings, 38, 84–594.

    Google Scholar 

  6. Yang, D., Liu, Y., Bai, C., Wang, X., & Powell, C. A. (2020). Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Letters, 468, 82–87.

    Article  PubMed  Google Scholar 

  7. Hosseinzadeh-Bandbafha, H., Panahi, H. K. S., Dehhaghi, M., Orooji, Y., Shahbeik, H., Mahian, O., Karimi-Maleh, H., Kalam, M. A., Jouzani, G. S., & Mei, C. (2023). Applications of nanotechnology in biodiesel combustion and post-combustion stages. Renewable and Sustainable Energy Reviews, 182, 113414.

    Article  CAS  Google Scholar 

  8. Panessa-Warren, B., Butcher, T., Warren, J. B., Trojanowski, R., Kisslinger, K., Wei, G., & Celebi, Y. (2022). Wood combustion nanoparticles emitted by conventional and advanced technology cordwood boilers, and their interactions in vitro with human lung epithelial monolayers. Biofuel Research Journal, 9, 1659–1671.

    Article  CAS  Google Scholar 

  9. Boogaard, H., Patton, A. P., Atkinson, R. W., Brook, J. R., Chang, H. H., Crouse, D. L., Fussell, J. C., Hoek, G., Hoffmann, B., & Kappeler, R. (2022). Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environment International, 164, 107262.

  10. Liang, H., Zhou, X., Zhu, Y., Li, D., Jing, D., Su, X., Pan, P., Liu, H., & Zhang, Y. (2023). Association of outdoor air pollution, lifestyle, genetic factors with the risk of lung cancer: A prospective cohort study. Environmental Research, 218, 114996.

    Article  CAS  PubMed  Google Scholar 

  11. Pan American Health Organization (PAHO). (2012). IARC: Diesel Engine Exhaust Carcinogenic. Retrieved Jun 7, 2023, from https://www3.paho.org/hq/index.php?option=com_content&view=article&id=6903:2012-iarc-diesel-engine-exhaust-carcinogenic&Itemid=0&lang=en#gsc.tab=0

    Google Scholar 

  12. Panahi, H. K. S., Dehhaghi, M., Lam, S. S., Peng, W., Aghbashlo, M., Tabatabaei, M., & Guillemin, G. J. (2021). Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Seminars in Cancer Biology, 86, 11221142.

    Google Scholar 

  13. Health Effects Institute. (2010). Traffic-related air pollution: A critical review of the literature on emissions, exposure, and health effects.Retrieved Jun 7, 2023, from https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-review-literature-emissions-exposure-and-health

    Google Scholar 

  14. Frey, H. C. (2018). Trends in onroad transportation energy and emissions. Journal of the Air & Waste Management Association, 68, 514–563.

    Article  CAS  Google Scholar 

  15. Robert, M. A., VanBergen, S., Kleeman, M. J., & Jakober, C. A. (2007b). Size and composition distributions of particulate matter emissions: Part 1—Light-duty gasoline vehicles. Journal of the Air & Waste Management Association, 57, 1414–1428.

    Article  CAS  Google Scholar 

  16. Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Chemical composition and sources of PM10 and PM2. 5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119, 425–439.

    Article  CAS  PubMed  Google Scholar 

  17. Bukowiecki, N., Kittelson, D. B., Watts, W. F., Burtscher, H., Weingartner, E., & Baltensperger, U. (2002). Real-time characterization of ultrafine and accumulation mode particles in ambient combustion aerosols. Journal of Aerosol Science, 33, 1139–1154.

    Article  CAS  Google Scholar 

  18. Robert, M. A., Kleeman, M. J., & Jakober, C. A. (2007a). Size and composition distributions of particulate matter emissions: Part 2—Heavy-duty diesel vehicles. Journal of the Air & Waste Management Association, 57, 1429–1438.

    Article  CAS  Google Scholar 

  19. Richter, H., & Howard, J. B. (2000). Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways. Progress in Energy and Combustion Science, 26, 565–608.

    Article  CAS  Google Scholar 

  20. Hvidtfeldt, U. A., Severi, G., Andersen, Z. J., Atkinson, R., Bauwelinck, M., Bellander, T., Boutron-Ruault, M.-C., Brandt, J., Brunekreef, B., & Cesaroni, G. (2021). Long-term low-level ambient air pollution exposure and risk of lung cancer–A pooled analysis of 7 European cohorts. Environment International, 146, 106249.

    Article  CAS  PubMed  Google Scholar 

  21. Lequy, E., Siemiatycki, J., de Hoogh, K., Vienneau, D., Dupuy, J.-F., Garès, V., Hertel, O., Christensen, J. H., Zhivin, S., & Goldberg, M. (2021). Contribution of long-term exposure to outdoor black carbon to the carcinogenicity of air pollution: Evidence regarding risk of cancer in the gazel cohort. Environmental Health Perspectives, 129, 37005.

    Article  CAS  PubMed  Google Scholar 

  22. Zong, Z.-Q., Chen, S.-W., Wu, Y., Gui, S.-Y., Zhang, X.-J., & Hu, C.-Y. (2023). Ambient air pollution exposure and telomere length: A systematic review and meta-analysis. Public Health, 215, 42–55.

    Article  PubMed  Google Scholar 

  23. Shammas, M. A. (2011). Telomeres, lifestyle, cancer, and aging. Current Opinion in Clinical Nutrition and Metabolic Care, 14, 28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doherty, J. A., Grieshober, L., Houck, J. R., Barnett, M. J., Tapsoba, J. D. D., Thornquist, M., Wang, C.-Y., Goodman, G. E., & Chen, C. (2018). Telomere length and lung cancer mortality among heavy smokerstelomere length and lung cancer mortality. Cancer Epidemiology, Biomarkers & Prevention, 27, 829–837.

    Article  CAS  Google Scholar 

  25. Okamoto, K., & Seimiya, H. (2019). Revisiting telomere shortening in cancer. Cells, 8, 107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, J., Li, W. X., Bai, C., & Song, Y. (2017a). Particulate matter-induced epigenetic changes and lung cancer. The Clinical Respiratory Journal, 11, 539–546.

    Article  CAS  PubMed  Google Scholar 

  27. Choi, H. S., Ashitate, Y., Lee, J. H., Kim, S. H., Matsui, A., Insin, N., Bawendi, M. G., Semmler-Behnke, M., Frangioni, J. V., & Tsuda, A. (2010). Rapid translocation of nanoparticles from the lung airspaces to the body. Nature Biotechnology, 28, 1300–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, T. L., Lai, C. H., Chen, Y. C., Ho, Y. H., Chen, A. Y., & Hsiao, T. C. (2023). Source-oriented risk and lung-deposited surface area (LDSA) of ultrafine particles in a Southeast Asia urban area. Science of the Total Environment, 870, 161733.

  29. Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M. J., & Brunekreef, B. (2013). Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology, 14, 813–822.

    Article  PubMed  Google Scholar 

  30. Yang, L., Wang, N., Liu, S., Xiao, Q., Geng, G., Zhang, X., Li, H., Zheng, Y., Guo, F., & Li, Q. (2023). The PM2. 5 concentration reduction improves survival rate of lung cancer in Beijing. Science of the Total Environment, 858, 159857.

    Article  CAS  PubMed  Google Scholar 

  31. Bell, M. L., Dominici, F., Ebisu, K., Zeger, S. L., & Samet, J. M. (2007). Spatial and temporal variation in PM2. 5 chemical composition in the United States for health effects studies. Environ. Health Perspectives, 115, 989–995.

    Article  CAS  Google Scholar 

  32. Raaschou-Nielsen, O., Antonsen, S., Agerbo, E., Hvidtfeldt, U. A., Geels, C., Frohn, L. M., Christensen, J. H., Sigsgaard, T., Brandt, J., & Pedersen, C. B. (2023). PM2. 5 air pollution components and mortality in Denmark. Environment International, 171, 107685.

    Article  CAS  PubMed  Google Scholar 

  33. Hystad, P., Demers, P. A., Johnson, K. C., Carpiano, R. M., & Brauer, M. (2013). Long-term residential exposure to air pollution and lung cancer risk. Epidemiology, 24, 762–772.

  34. Wang, X., Wang, T., Hua, J., Cai, M., Qian, Z., Wang, C., Li, H., McMillin, S. E., Aaron, H. E., & Xie, C. (2023). Histological types of lung cancer attributable to fine particulate, smoking, and genetic susceptibility. Science of the Total Environment, 858, 159890.

    Article  CAS  PubMed  Google Scholar 

  35. Lamichhane, D. K., Kim, H.-C., Choi, C.-M., Shin, M.-H., Shim, Y. M., Leem, J.-H., Ryu, J.-S., Nam, H.-S., & Park, S.-M. (2017). Lung cancer risk and residential exposure to air pollution: A Korean population-based case-control study. Yonsei Medical Journal, 58, 1111–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyers, T. J., Chang, S., Chang, P., Morgenstern, H., Tashkin, D. P., Rao, J., Cozen, W., Mack, T. M., & Zhang, Z. (2017). Case-control study of cumulative cigarette tar exposure and lung and upper aerodigestive tract cancers. International Journal of Cancer, 140, 2040–2050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ribeiro, A. G., Downward, G. S., de Freitas, C. U., Neto, F. C., Cardoso, M. R. A., do Rosario Dias de Oliveira Latorre, M., Hystad, P., Vermeulen, R., & Nardocci, A. C. (2019). Incidence and mortality for respiratory cancer and traffic-related air pollution in São Paulo, Brazil. Environmental Research, 170, 243–251.

    Article  CAS  PubMed  Google Scholar 

  38. Wong, J. Y. Y., Jones, R. R., Breeze, C., Blechter, B., Rothman, N., Hu, W., Ji, B., Bassig, B. A., Silverman, D. T., & Lan, Q. (2021). Commute patterns, residential traffic-related air pollution, and lung cancer risk in the prospective UK Biobank cohort study. Environment International, 155, 106698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Atkinson, R. W., Butland, B. K., Dimitroulopoulou, C., Heal, M. R., Stedman, J. R., Carslaw, N., Jarvis, D., Heaviside, C., Vardoulakis, S., & Walton, H. (2016). Long-term exposure to ambient ozone and mortality: a quantitative systematic review and meta-analysis of evidence from cohort studies. BMJ Open, 6, e009493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo, Y., Zeng, H., Zheng, R., Li, S., Barnett, A. G., Zhang, S., Zou, X., Huxley, R., Chen, W., & Williams, G. (2016). The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environmental Research, 144, 60–65.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  42. Da Sacco, L., & Masotti, A. (2012). Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5’untranslated region. International Journal of Molecular Sciences, 14, 480–495.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fang, Z., & Rajewsky, N. (2011). The impact of miRNA target sites in coding sequences and in 3′ UTRs. PLoS One, 6, e18067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dweep, H., Sticht, C., Pandey, P., & Gretz, N. (2011). miRWalk–database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. Journal of Biomedical Informatics, 44, 839–847.

    Article  CAS  PubMed  Google Scholar 

  45. Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development, 132, 4645–52.

  46. Davis, B. N., Hilyard, A. C., Lagna, G., & Hata, A. (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 454, 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukuda, T., Yamagata, K., Fujiyama, S., Matsumoto, T., Koshida, I., Yoshimura, K., Mihara, M., Naitou, M., Endoh, H., & Nakamura, T. (2007). DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biology, 9, 604–611.

    Article  CAS  PubMed  Google Scholar 

  48. Trabucchi, M., Briata, P., Garcia-Mayoral, M., Haase, A. D., Filipowicz, W., Ramos, A., Gherzi, R., & Rosenfeld, M. G. (2009). The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 459, 1010–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alarcón, C. R., Lee, H., Goodarzi, H., Halberg, N., & Tavazoie, S. F. (2015). N 6-Methyladenosine marks primary microRNAs for processing. Nature, 519, 482–485.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cui, L., Zhou, H., Zhao, H., Zhou, Y., Xu, R., Xu, X., Zheng, L., Xue, Z., Xia, W., & Zhang, B. (2012). MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC Cancer, 12, 1–11.

    Article  Google Scholar 

  51. Hu, Z. J., He, J. F., Li, K. J., Chen, J., & Xie, X. R. (2017). Decreased microRNA-146a in CD4+ T cells promote ocular inflammation in thyroid-associated ophthalmopathy by targeting NUMB. European Review for Medical and Pharmacological Sciences, 21, 1803–1809.

  52. Huang, C., Liu, X., Xie, J., Ma, T., Meng, X., & Li, J. (2016). MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264. 7 macrophages. International Immunopharmacology, 32, 46–54.

    Article  PubMed  Google Scholar 

  53. Li, X., Han, J., Zhu, H., Peng, L., & Chen, Z. (2017b). miR-181b-5p mediates TGF-β1-induced epithelial-to-mesenchymal transition in non-small cell lung cancer stem-like cells derived from lung adenocarcinoma A549 cells. International Journal of Oncology, 51, 158–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Palomer, X., Capdevila-Busquets, E., Botteri, G., Davidson, M. M., Rodríguez, C., Martínez-González, J., Vidal, F., Barroso, E., Chan, T. O., & Feldman, A. M. (2015). miR-146a targets Fos expression in human cardiac cells. Disease Models & Mechanisms, 8, 1081–1091.

    CAS  Google Scholar 

  55. Wang, G., Huang, Y., Wang, L.-L., Zhang, Y.-F., Xu, J., Zhou, Y., Lourenco, G. F., Zhang, B., Wang, Y., & Ren, R.-J. (2016). MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Scientific Reports, 6, 26697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, X., Gong, Y., Lin, X., Lin, Q., Luo, J., Yu, T., Xu, J., Chen, L., Xu, L., & Hu, Y. (2022b). Down-regulation of microRNA-155 suppressed Candida albicans induced acute lung injury by activating SOCS1 and inhibiting inflammation response. Journal of Microbiology, 60, 402–410.

    Article  CAS  PubMed  Google Scholar 

  57. Li, X., Liu, K., Zhou, W., & Jiang, Z. (2020b). MiR-155 targeting FoxO3a regulates oral cancer cell proliferation, apoptosis, and DDP resistance through targeting FoxO3a. Cancer Biomarkers, 27, 105–111.

    Article  PubMed  Google Scholar 

  58. Peng, Y., Dong, W., Lin, T., Zhong, G., Liao, B., Wang, B., Gu, P., Huang, L., Xie, Y., & Lu, F. (2015). MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1. Oncotarget, 6, 16043.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Al-Haidari, A. A., Syk, I., & Thorlacius, H. (2017). MiR-155-5p positively regulates CCL17-induced colon cancer cell migration by targeting RhoA. Oncotarget, 8, 14887.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liao, W. W., Zhang, C., Liu, F. R., & Wang, W. J. (2020). Effects of miR-155 on proliferation and apoptosis by regulating FoxO3a/BIM in liver cancer cell line HCCLM3. European Review for Medical and Pharmacological Sciences, 24, 7196.

    PubMed  Google Scholar 

  61. Suzuki, R., Amatya, V. J., Kushitani, K., Kai, Y., Kambara, T., & Takeshima, Y. (2018). miR-182 and miR-183 promote cell proliferation and invasion by targeting FOXO1 in mesothelioma. Frontiers in Oncology, 8, 446.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu, M., Duan, Q., Liu, X., Zhang, P., Fu, Y., Zhang, Z., Liu, L., Cheng, J., & Jiang, H. (2020). MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomedicine & Pharmacotherapy, 122, 109696.

    Article  CAS  Google Scholar 

  63. Li, X., Zhang, X., Zhang, Q., & Lin, R. (2019a). miR-182 contributes to cell proliferation, invasion and tumor growth in colorectal cancer by targeting DAB2IP. Int. The International Journal of Biochemistry & Cell Biology, 111, 27–36.

    Article  CAS  Google Scholar 

  64. Sarver, A. L., Li, L., & Subramanian, S. (2010). MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Research, 70, 9570–9580.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, J., Li, J., Shen, J., Wang, C., Yang, L., & Zhang, X. (2012). MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer, 12, 1–10.

    Article  CAS  Google Scholar 

  66. Fang, Z., Tang, J., Bai, Y., Lin, H., You, H., Jin, H., Lin, L., You, P., Li, J., & Dai, Z. (2015). Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. Journal of Experimental & Clinical Cancer Research, 34, 1–10.

    Article  Google Scholar 

  67. He, J., Ling, L., Liu, Z., Ren, X., Wan, L., Tu, C., & Li, Z. (2021). Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma. Cancer Cell International, 21, 313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin, X., Zheng, L., Song, H., Xiao, J., Pan, B., Chen, H., Jin, X., & Yu, H. (2017). Effects of microRNA-183 on epithelial-mesenchymal transition, proliferation, migration, invasion and apoptosis in human pancreatic cancer SW1900 cells by targeting MTA1. Experimental and Molecular Pathology, 102, 522–532.

    Article  CAS  PubMed  Google Scholar 

  69. Lu, Y.-Y., Zheng, J.-Y., Liu, J., Huang, C.-L., Zhang, W., & Zeng, Y. (2015). miR-183 induces cell proliferation, migration, and invasion by regulating PDCD4 expression in the SW1990 pancreatic cancer cell line. Biomedicine & Pharmacotherapy, 70, 151–157.

    Article  CAS  Google Scholar 

  70. Nouri, N., Shareghi-Oskoue, O., Aghebati-Maleki, L., Danaii, S., Ahmadian Heris, J., Soltani-Zangbar, M. S., Kamrani, A., & Yousefi, M. (2022). Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Communication and Signaling: CCS, 20, 1–12.

    Article  Google Scholar 

  71. Wang, Y.-Y., Duan, S.-H., Wang, G.-L., & Li, J.-L. (2021). Integrated mRNA and miRNA expression profile analysis of female and male gonads in Hyriopsis cumingii. Scientific Reports, 11, 665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang, D., Feng, W., Zhuang, Y., Liu, J., Feng, Z., Xu, T., Wang, W., Zhu, Y., & Wang, Z. (2021). Long non-coding RNA linc00665 inhibits CDKN1C expression by binding to EZH2 and affects cisplatin sensitivity of NSCLC cells. Molecular Therapy-Nucleic Acids, 23, 1053–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, X., Wang, S., Sun, M., Zhang, C., Wei, C., Yang, C., Dou, R., Liu, Q., & Xiong, B. (2019). miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. Journal of Hematology & Oncology, 12, 1–14.

    Google Scholar 

  74. Nie, H., Mu, J., Wang, J., & Li, Y. (2018). miR-195-5p regulates multi-drug resistance of gastric cancer cells via targeting ZNF139. Oncology Reports, 40, 1370–1378.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Patil, N., Allgayer, H., & Leupold, J. H. (2020). MicroRNAs in the tumor microenvironment. In A. Birbrair (Eds.), Tumor Microenvironment. Advances in Experimental Medicine and Biology (pp. 1–31). Springer, Cham.

  76. Tang, X., Tu, G., Yang, G., Wang, X., Kang, L., Yang, L., Zeng, H., Wan, X., Qiao, Y., & Cui, X. (2019). Autocrine TGF-β1/miR-200s/miR-221/DNMT3B regulatory loop maintains CAF status to fuel breast cancer cell proliferation. Cancer Letters, 452, 79–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu, C.-L., Ho, J.-Y., Chou, S.-C., & Yu, D.-S. (2016). MiR-429 reverses epithelial-mesenchymal transition by restoring E-cadherin expression in bladder cancer. Oncotarget, 7, 26593.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yao, C.-X., Wei, Q.-X., Zhang, Y.-Y., Wang, W.-P., Xue, L.-X., Yang, F., Zhang, S.-F., Xiong, C.-J., Li, W.-Y., & Wei, Z.-R. (2013). miR-200b targets GATA-4 during cell growth and differentiation. RNA Biology, 10, 465–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yin, Y., Hong, S., Yu, S., Huang, Y., Chen, S., Liu, Y., Zhang, Q., Li, Y., & Xiao, H. (2017). MiR-195 inhibits tumor growth and metastasis in papillary thyroid carcinoma cell lines by targeting CCND1 and FGF2. International Journal of Endocrinology, 2017, 6180425.

  80. Yu, Y., Kanwar, S. S., Patel, B. B., Oh, P.-S., Nautiyal, J., Sarkar, F. H., & Majumdar, A. P. N. (2012). MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis, 33, 68–76.

    Article  PubMed  Google Scholar 

  81. Belvedere, R., Saggese, P., Pessolano, E., Memoli, D., Bizzarro, V., Rizzo, F., Parente, L., Weisz, A., & Petrella, A. (2018). miR-196a is able to restore the aggressive phenotype of annexin A1 knock-out in pancreatic cancer cells by CRISPR/Cas9 genome editing. International Journal of Molecular Sciences, 19, 1967.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Choupani, J., Nariman-Saleh-Fam, Z., Saadatian, Z., Ouladsahebmadarek, E., Masotti, A., & Bastami, M. (2019). Association of mir-196a-2 rs11614913 and mir-149 rs2292832 polymorphisms with risk of cancer: An updated meta-analysis. Frontiers in Genetics, 10, 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, J., Li, Z., Zhao, S., Song, Y., Si, L., & Wang, X. (2020a). Identification key genes, key miRNAs and key transcription factors of lung adenocarcinoma. Journal of Thoracic Disease, 12, 1917.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mendiola-Soto, D. K., Bárcenas-López, D. A., Pérez-Amado, C. J., Cruz-Miranda, G. M., Mejía-Aranguré, J. M., Ramírez-Bello, J., Hidalgo-Miranda, A., & Jiménez-Morales, S. (2023). MiRNAs in hematopoiesis and acute lymphoblastic leukemia. International Journal of Molecular Sciences, 24, 5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qiu, H., Xie, Z., Tang, W., Liu, C., Wang, Y., Gu, H., & Zheng, Q. (2021). Association between microRNA-146a,-499a and-196a-2 SNPs and non-small cell lung cancer: A case–control study involving 2249 subjects. Bioscience Reports, 41, BSR20201158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Szczyrek, M., Bitkowska, P., Jutrzenka, M., & Milanowski, J. (2022). The role of the selected miRNAs as diagnostic, predictive and prognostic markers in non-small-cell lung cancer. Journal of Personalized Medicine, 12, 1227.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wu, N., Zhang, C., Bai, C., Han, Y. P., & Li, Q. (2014). MiR-4782-3p inhibited non-small cell lung cancer growth via USP14. Cellular Physiology and Biochemistry, 33, 457–467.

    Article  CAS  PubMed  Google Scholar 

  88. Xu, G., Liu, C., Liang, T., Qin, Z., Yu, C. J., Zhang, Z., Jiang, J., Chen, J., & Zhan, X. (2020). Integrated miRNA-mRNA network revealing the key molecular characteristics of ossification of the posterior longitudinal ligament. Medicine (Baltimore), 99, e20268.

  89. Ding, B., Ma, G., Wang, Z., Liang, W., & Gao, W. (2021). Mechanisms of kidney cell pyroptosis in chronic kidney disease and the effects of traditional Chinese medicine, Evidence-based Complementary and Alternative Medicine, 2021, 1173324.

  90. Khajehdehi, M., Khalaj-Kondori, M., Ghasemi, T., Jahanghiri, B., & Damaghi, M. (2021). Long non-coding RNAs in gastrointestinal cancer: Tumor suppression versus tumor promotion. Digestive Diseases and Sciences, 66, 381–397.

    Article  CAS  PubMed  Google Scholar 

  91. Liu, Z., Zhang, L., Toma, M. A., Li, D., Bian, X., Pastar, I., Tomic-Canic, M., Sommar, P., & Landén, N. X. (2022). Integrative small and long RNA omics analysis of human healing and nonhealing wounds discovers cooperating microRNAs as therapeutic targets. Elife, 11, e80322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tian, Y., Li, X., Bai, C., Yang, Z., Zhang, L., & Luo, J. (2020). MiR-17-5p promotes the endothelialization of endothelial progenitor cells to facilitate the vascular repair of aneurysm by regulating PTEN-mediated PI3K/AKT/VEGFA pathway. Cell Cycle, 19, 3608–3621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zafari, N., Bahramy, A., Majidi Zolbin, M., Emadi Allahyari, S., Farazi, E., Hassannejad, Z., & Yekaninejad, M. S. (2022). MicroRNAs as novel diagnostic biomarkers in endometriosis patients: a systematic review and meta-analysis. Expert Review of Molecular Diagnostics, 22, 479–495.

    Article  CAS  PubMed  Google Scholar 

  94. Zhuang, J., Fan, J., Zhu, L., Zhao, L., Huang, Y., Pan, X., & Guo, T. (2023). miR-452-5p suppressed the metastasis of non-small cell lung cancer through regulating Moesin. Journal of Cancer, 14, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hsu, T.-K., Asmussen, J., Koire, A., Choi, B.-K., Gadhikar, M. A., Huh, E., Lin, C.-H., Konecki, D. M., Kim, Y. W., & Pickering, C. R. (2022). A general calculus of fitness landscapes finds genes under selection in cancers. Genome Research, 32, 916–929.

    PubMed  PubMed Central  Google Scholar 

  96. Li, J., Li, P., Shao, J., Liang, S., Wan, Y., Zhang, Q., Li, C., Li, Y., & Wang, C. (2022a). Emerging role of non-coding RNAs in EGFR TKI-resistant lung cancer. Cancers (Basel)., 14, 4423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tian, F., Wang, J., Ouyang, T., Lu, N., Lu, J., Shen, Y., Bai, Y., Xie, X., & Ge, Q. (2019). MiR-486-5p serves as a good biomarker in non-small cell lung cancer and suppresses cell growth with the involvement of a target PIK3R1. Frontiers in Genetics, 10, 688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, G., Liu, Z., Cui, G., Wang, X., & Yang, Z. (2014). MicroRNA-486-5p targeting PIM-1 suppresses cell proliferation in breast cancer cells. Tumor Biology, 35, 11137–11145.

    Article  CAS  PubMed  Google Scholar 

  99. Al-Marzook, F. A., Hassan, D. M., Alghazal, M. W., Kadheem, R. A. A., Jalil, A. T., & Saleh, M. M. (2023). MicroRNA-32 suppression: Its effects on prostate cancer cells’ capability to proliferate and migrate. Drug Research, 73, 170–174.

  100. Choi, Y.-C., Yoon, S., Byun, Y., Lee, G., Kee, H., Jeong, Y., Yoon, J., & Baek, K. (2015). MicroRNA library screening identifies growth-suppressive microRNAs that regulate genes involved in cell cycle progression and apoptosis. Experimental Cell Research, 339, 320–332.

    Article  CAS  PubMed  Google Scholar 

  101. Pacholewska, A., Kraft, M. F., Gerber, V., & Jagannathan, V. (2017). Differential expression of serum microRNAs supports CD4+ T cell differentiation into Th2/Th17 cells in severe equine asthma. Genes (Basel), 8, 383.

  102. Nelson, K. M., & Weiss, G. J. (2008). MicroRNAs and cancer: Past, present, and potential future. Molecular Cancer Therapeutics, 7, 3655–3660.

    Article  CAS  PubMed  Google Scholar 

  103. Weiss, G. J., Bemis, L. T., Nakajima, E., Sugita, M., Birks, D. K., Robinson, W. A., Varella-Garcia, M., Bunn, P. A., Jr., Haney, J., & Helfrich, B. A. (2008). EGFR regulation by microRNA in lung cancer: Correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Annals of Oncology, 19, 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  104. Uhlmann, S., Mannsperger, H., Zhang, J. D., Horvat, E., Schmidt, C., Küblbeck, M., Henjes, F., Ward, A., Tschulena, U., & Zweig, K. (2012). Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. Molecular Systems Biology, 8, 570.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bader, A. G., Brown, D., Stoudemire, J., & Lammers, P. (2011). Developing therapeutic microRNAs for cancer. Gene Therapy, 18, 1121–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gao, F., Zhao, Z.-L., Zhao, W.-T., Fan, Q.-R., Wang, S.-C., Li, J., Zhang, Y.-Q., Shi, J.-W., Lin, X.-L., & Yang, S. (2013). miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochemical and Biophysical Research Communications, 431, 610–616.

    Article  CAS  PubMed  Google Scholar 

  107. Ueda, R., Kohanbash, G., Sasaki, K., Fujita, M., Zhu, X., Kastenhuber, E. R., McDonald, H. A., Potter, D. M., Hamilton, R. L., & Lotze, M. T. (2009). Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proceedings of the National Academy of Sciences, 106, 10746–10751.

    Article  CAS  Google Scholar 

  108. Li, Z., Liu, J., Que, L., & Tang, X. (2019b). The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway. Journal of Cancer, 10, 5770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yu, T. -T., Zhang, T., Lu, X., & Wang, R. -Z. (2018). B7-H3 promotes metastasis, proliferation, and epithelial-mesenchymal transition in lung adenocarcinoma. Oncotargets and Therapy, 10, 4693–4700.

  110. Xu, H., Cheung, I. Y., Guo, H.-F., & Cheung, N.-K. V. (2009). MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: Potential implications for immune based therapy of human solid tumors. Cancer Research, 69, 6275–6281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Inamura, K., Yokouchi, Y., Kobayashi, M., Ninomiya, H., Sakakibara, R., Subat, S., Nagano, H., Nomura, K., Okumura, S., & Shibutani, T. (2017). Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes. Oncotarget, 8, 28725.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mito, R., Matsubara, E., Komohara, Y., Shinchi, Y., Sato, K., Yoshii, D., Ohnishi, K., Fujiwara, Y., Tomita, Y., & Ikeda, K. (2020). Clinical impact of TROP2 in non-small lung cancers and its correlation with abnormal p53 nuclear accumulation. Pathology International, 70, 287–294.

    Article  CAS  PubMed  Google Scholar 

  113. Nakanishi, H., Taccioli, C., Palatini, J., Fernandez-Cymering, C., Cui, R., Kim, T., Volinia, S., & Croce, C. M. (2014). Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene, 33, 702–712.

    Article  CAS  PubMed  Google Scholar 

  114. Saunders, M. A., & Lim, L. P. (2009). (micro) Genomic medicine: MicroRNAs as therapeutics and biomarkers. RNA Biology, 6, 324–328.

    Article  CAS  PubMed  Google Scholar 

  115. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  116. Bracken, C. P., Scott, H. S., & Goodall, G. J. (2016). A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews. Genetics, 17, 719–732.

    Article  CAS  PubMed  Google Scholar 

  117. Sweef, O., Zaabout, E., Bakheet, A., Halawa, M., Gad, I., Akela, M., Tousson, E., Abdelghany, A., & Furuta, S. (2023). Unraveling therapeutic opportunities and the diagnostic potential of microRNAs for human lung cancer. Pharmaceutics, 15, 2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pavel, A. B., Campbell, J. D., Liu, G., Elashoff, D., Dubinett, S., Smith, K., Whitney, D., Lenburg, M. E., & Spira, A. (2017). Alterations in bronchial airway miRNA expression for lung cancer detection. Cancer Prevention Research, 10, 651–659.

    Article  CAS  PubMed  Google Scholar 

  119. Hanna, J., Hossain, G. S., & Kocerha, J. (2019). The potential for microRNA therapeutics and clinical research. Frontiers in Genetics, 10, 478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, V., & Wu, W. (2009). MicroRNA-based therapeutics for cancer. BioDrugs, 23, 15–23.

    Article  PubMed  Google Scholar 

  121. Hong, D. S., Kang, Y. -K., Brenner, A. J., Sachdev, J. C., Ejadi, S., Borad, M. J., Kim, T. -Y., Lim, H. Y., Park, K., Becerra, C. (2016). MRX34, a liposomal miR-34 mimic, in patients with advanced solid tumors: Final dose-escalation results from a first-in-human phase I trial of microRNA therapy. British Journal of Cancer, 122, 1630–1637.

    Google Scholar 

  122. Cortez, M. A., Ivan, C., Valdecanas, D., Wang, X., Peltier, H. J., Ye, Y., Araujo, L., Carbone, D. P., Shilo, K., & Giri, D. K. (2016). PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 108, djv303.

  123. Hong, D. S., Kang, Y.-K., Borad, M., Sachdev, J., Ejadi, S., Lim, H. Y., Brenner, A. J., Park, K., Lee, J.-L., & Kim, T.-Y. (2020). Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. British Journal of Cancer, 122, 1630–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. van Zandwijk, N., Pavlakis, N., Kao, S. C., Linton, A., Boyer, M. J., Clarke, S., Huynh, Y., Chrzanowska, A., Fulham, M. J., & Bailey, D. L. (2017). Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. The Lancet Oncology, 18, 1386–1396.

    Article  PubMed  Google Scholar 

  125. Reid, G., Pel, M. E., Kirschner, M. B., Cheng, Y. Y., Mugridge, N., Weiss, J., Williams, M., Wright, C., Edelman, J. J. B., & Vallely, M. P. (2013). Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Annals of Oncology, 24, 3128–3135.

    Article  CAS  PubMed  Google Scholar 

  126. Reid, G., Kao, S. C., Pavlakis, N., Brahmbhatt, H., MacDiarmid, J., Clarke, S., Boyer, M., & van Zandwijk, N. (2016). Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics, 8, 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  127. Tang, L., Chen, H.-Y., Hao, N.-B., Tang, B., Guo, H., Yong, X., Dong, H., & Yang, S.-M. (2017). MicroRNA inhibitors: Natural and artificial sequestration of microRNA. Cancer Letters, 407, 139–147.

    Article  CAS  PubMed  Google Scholar 

  128. Dambal, S., Shah, M., Mihelich, B., & Nonn, L. (2015). The microRNA-183 cluster: The family that plays together stays together. Nucleic Acids Research, 43, 7173–7188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lin, C.-W., Chang, Y.-L., Chang, Y.-C., Lin, J.-C., Chen, C.-C., Pan, S.-H., Wu, C.-T., Chen, H.-Y., Yang, S.-C., & Hong, T.-M. (2013). MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nature Communications, 4, 1877.

    Article  PubMed  Google Scholar 

  130. Xu, L., Wu, Z., Chen, Y., Zhu, Q., Hamidi, S., & Navab, R. (2014). MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One, 9, e103698.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rama, A. R., Quiñonero, F., Mesas, C., Melguizo, C., & Prados, J. (2022). Synthetic circular miR-21 sponge as tool for lung cancer treatment. International Journal of Molecular Sciences, 23, 2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J.-J., Hammond, S. M., Joshua-Tor, L., & Hannon, G. J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science (80-.), 305, 1437–1441.

    Article  CAS  Google Scholar 

  133. Cheng, D.-L., Xiang, Y.-Y., Ji, L., & Lu, X.-J. (2015). Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives. Tumor Biology, 36, 479–488.

    Article  CAS  PubMed  Google Scholar 

  134. Li, Q., Li, X., Guo, Z., Xu, F., Xia, J., Liu, Z., & Ren, T. (2012). MicroRNA-574-5p was pivotal for TLR9 signaling enhanced tumor progression via down-regulating checkpoint suppressor 1 in human lung cancer. PLoS One, 7, e48278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Xue, Y., Ni, T., Jiang, Y., & Li, Y. (2017). Long non-coding RNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 25, 1305–1316.

    Article  Google Scholar 

  136. Kaczmarek, J. C., Kowalski, P. S., & Anderson, D. G. (2017). Advances in the delivery of RNA therapeutics: From concept to clinical reality. Genome Medicine, 9, 1–16.

    Article  Google Scholar 

  137. Xue, W., Dahlman, J. E., Tammela, T., Khan, O. F., Sood, S., Dave, A., Cai, W., Chirino, L. M., Yang, G. R., & Bronson, R. (2014). Small RNA combination therapy for lung cancer. Proceedings of the National Academy of Sciences, 111, E3553–E3561.

    Article  CAS  Google Scholar 

  138. Wahlgren, J., Karlson, T. D. L., Brisslert, M., Vaziri Sani, F., Telemo, E., Sunnerhagen, P., & Valadi, H. (2012). Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 40, e130–e130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Catuogno, S., Esposito, C. L., & De Franciscis, V. (2016). Aptamer-mediated targeted delivery of therapeutics: An update. Pharmaceuticals, 9, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lakshmikuttyamma, A., Sun, Y., Lu, B., Undieh, A. S., & Shoyele, S. A. (2014). Stable and efficient transfection of siRNA for mutated KRAS silencing using novel hybrid nanoparticles. Molecular Pharmaceutics, 11, 4415–4424.

    Article  CAS  PubMed  Google Scholar 

  141. Jain, D., Athawale, R., Bajaj, A., Shrikhande, S., Goel, P. N., & Gude, R. P. (2013). Studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles. Colloids and Surfaces. B, Biointerfaces, 109, 59–67.

    Article  CAS  PubMed  Google Scholar 

  142. Perepelyuk, M., Sacko, K., Thangavel, K., & Shoyele, S. A. (2018). Evaluation of MUC1-aptamer functionalized hybrid nanoparticles for targeted delivery of miRNA-29b to non-small cell lung cancer. Molecular Pharmaceutics, 15, 985–993.

    Article  CAS  PubMed  Google Scholar 

  143. Alhaj-Suliman, S. O., Wafa, E. I., & Salem, A. K. (2022). Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Advanced Drug Delivery Reviews, 189, 114482.

  144. Peng, Y., Zhu, X., & Qiu, L. (2016). Electroneutral composite polymersomes self-assembled by amphiphilic polyphosphazenes for effective miR-200c in vivo delivery to inhibit drug resistant lung cancer. Biomaterials, 106, 1–12.

    Article  CAS  PubMed  Google Scholar 

  145. Panahi, H. K. S., Dehhaghi, M., Amiri, H., Guillemin, G. J., Gupta, V. K., Rajaei, A., Yang, Y., Peng, W., Pan, J., & Aghbashlo, M. (2023). Current and emerging applications of saccharide-modified chitosan: a critical review. Biotechnology Advances, 66, 108172.

  146. Golafzani, F. N., Vaziri, A. Z., Javanmardi, M., Seyfan, F., Yazdanifar, M., & Khaleghi, S. (2022). Delivery of miRNA-126 through folic acid-targeted biocompatible polymeric nanoparticles for effective lung cancer therapy. Journal of Bioactive and Compatible Polymers, 37, 168–188.

    Article  CAS  Google Scholar 

  147. Arora, V., Abourehab, M. A. S., Modi, G., & Kesharwani, P. (2022). Dendrimers as prospective nanocarrier for targeted delivery against lung cancer. European Polymer Journal, 180, 111635.

  148. Azar, N. T. P., Mutlu, P., Khodadust, R., & Gunduz, U. (2013). Poly amidoamine PAMAM nanoparticles: synthesis and biomedical applications. Hacettepe Journal of Biology and Chemistry, 41, 289–299.

    Google Scholar 

  149. Wang, H., Zhao, X., Guo, C., Ren, D., Zhao, Y., Xiao, W., & Jiao, W. (2015). Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS One, 10, e0139136.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank Universiti Malaysia Terengganu under International Partnership Research Grant (UMT/CRIM/2-2/2/23 (23), Vot 55302) for supporting this joint project with Henan Agricultural University under a Research Collaboration Agreement (RCA). This work is also supported by the Ministry of Higher Education, Malaysia, under the Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP) program (Vot. No. 56052, UMT/CRIM/2-2/5 Jilid 2 (11)). The manuscript is also supported by the Program for Innovative Research Team (in Science and Technology) at the University of Henan Province (No. 21IRTSTHN020) and the Central Plain Scholar Funding Project of Henan Province (No. 212101510005). The authors would also like to extend their sincere appreciation to the University of Tehran and the Biofuel Research Team (BRTeam) for their support throughout this project.

Author information

Authors and Affiliations

Authors

Contributions

H.K.S.P and M.D. wrote the original draft of the manuscript; G.J.G. contributed to some of the resources needed for the execution of the project; W.P., M.A., and M.T. conceptualized the idea of the manuscript, provided the required resources, and supervised the whole process. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Wanxi Peng, Mortaza Aghbashlo or Meisam Tabatabaei.

Ethics declarations

Ethical approval

N/A.

Informed consent

N/A.

Conflict of interest

N/A.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi Shariat Panahi, H., Dehhaghi, M., Guillemin, G.J. et al. Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer. Cancer Metastasis Rev (2023). https://doi.org/10.1007/s10555-023-10142-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-023-10142-x

Keywords

Navigation