Skip to main content

Advertisement

Log in

Endothelial caveolin and its scaffolding domain in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Since the initial reports implicating caveolin-1 (CAV1) in neoplasia, the scientific community has made tremendous strides towards understanding how CAV1-dependent signaling and caveolae assembly modulate solid tumor growth. Once a solid neoplastic tumor reaches a certain size, it will increasingly rely on its stroma to meet the metabolic demands of the rapidly proliferating cancer cells, a limitation typically but not exclusively addressed via the formation of new blood vessels. Landmark studies using xenograft tumor models have highlighted the importance of stromal CAV1 during neoplastic blood vessel growth from preexisting vasculature, a process called angiogenesis, and helped identify endothelium-specific signaling events regulated by CAV1, such as vascular endothelial growth factor (VEGF) receptors as well as the endothelial nitric oxide (NO) synthase (eNOS) systems. This chapter provides a glimpse into the signaling events modulated by CAV1 and its scaffolding domain (CSD) during endothelial-specific aspects of neoplastic growth, such as vascular permeability, angiogenesis, and mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Palade, G. E. (1953). Fine structure of blood capillaries. Journal of Applied Physics. https://doi.org/10.1063/1.1721193.

  2. Orci, L., & Perrelet, A. (1973). Membrane-associated particles: increase at sites of pinocytosis demonstrated by freeze-etching. Science (80-. ). https://doi.org/10.1126/science.181.4102.868.

  3. Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. Journal of Cell Biology. https://doi.org/10.1083/jcb.200302028.

  4. Severs, N. J. (1988). Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? Journal of Cell Science, 90(Pt 3), 341–348.

    PubMed  Google Scholar 

  5. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., & Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4), 673–682.

    Article  CAS  PubMed  Google Scholar 

  6. Glenney Jr., J. R., & Soppet, D. (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 89(21), 10517–10521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okamoto, T., Schlegel, A., Scherer, P. E., & Lisanti, M. P. (1998). Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes’ at the plasma membrane. The Journal of Biological Chemistry, 273(10), 5419–5422.

    Article  CAS  PubMed  Google Scholar 

  8. Harvey, R. D., & Calaghan, S. C. (2012). Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. Journal of Molecular and Cellular Cardiology. https://doi.org/10.1016/j.yjmcc.2011.07.007.

  9. Couet, J., Li, S., Okamoto, T., Ikezu, T., & Lisanti, M. P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. The Journal of Biological Chemistry, 272(10), 6525–6533.

    Article  CAS  PubMed  Google Scholar 

  10. Gratton, J. P., Bernatchez, P., & Sessa, W. C. (2004). Caveolae and caveolins in the cardiovascular system. Circulation Research, 94(11), 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  11. Drab, M., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science (80-. )., 293(5539), 2449–2452.

    Article  CAS  Google Scholar 

  12. Razani, B., et al. (2001). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. The Journal of Biological Chemistry, 276(41), 38121–38138.

    CAS  PubMed  Google Scholar 

  13. Zhao, Y. Y., et al. (2002). Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11375–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang, S. H., Feng, D., Nagy, J. A., Sciuto, T. E., Dvorak, A. M., & Dvorak, H. F. (2009). Vascular permeability and pathological angiogenesis in caveolin-1-null mice. The American Journal of Pathology, 175(4), 1768–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koleske, A. J., Baltimore, D., & Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1381–1385. https://doi.org/10.1073/pnas.92.5.1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B., & Schnitzer, J. E. (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16(11), 1391–1397. https://doi.org/10.1038/sj.onc.1201661.

    Article  CAS  PubMed  Google Scholar 

  17. Bishop, J. M. (1991). Molecular themes in oncogenesis. Cell, 64(2), 235–248. https://doi.org/10.1016/0092-8674(91)90636-d.

    Article  CAS  PubMed  Google Scholar 

  18. Levin, A. M., Murase, K., Jackson, P. J., Flinspach, M. L., Poulos, T. L., & Weiss, G. A. (2007). Double barrel shotgun scanning of the caveolin-1 scaffolding domain. ACS Chemical Biology, 2(7), 493–500. https://doi.org/10.1021/cb700055t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48(1), 359–391. https://doi.org/10.1146/annurev.pharmtox.48.121506.124841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng, F., et al. (2017). The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E17-05-0278.

  21. Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. The Journal of Biological Chemistry, 272(48), 30429–30438. https://doi.org/10.1074/jbc.272.48.30429.

    Article  CAS  PubMed  Google Scholar 

  22. Shack, S., Wang, X.-T., Kokkonen, G. C., Gorospe, M., Longo, D. L., & Holbrook, N. J. (2003). Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Molecular and Cellular Biology, 23(7), 2407–2414. https://doi.org/10.1128/MCB.23.7.2407-2414.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Razani, B., & Lisanti, M. P. (2001). Two distinct caveolin-1 domains mediate the functional interaction of caveolin-1 with protein kinase A. American Journal of Physiology. Cell Physiology, 281(4), C1241–C1250. https://doi.org/10.1152/ajpcell.2001.281.4.C1241.

    Article  CAS  PubMed  Google Scholar 

  24. Rybin, V. O., Xu, X., & Steinberg, S. F. (1999). Activated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation. Circulation Research, 84(9), 980–988.

    Article  CAS  PubMed  Google Scholar 

  25. Iiri, T., Backlund, P. S., Jones, T. L., Wedegaertner, P. B., & Bourne, H. R. (1996). Reciprocal regulation of Gs alpha by palmitate and the beta gamma subunit. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14592–14597. https://doi.org/10.1073/pnas.93.25.14592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ostrom, R. S., & Insel, P. A. (2004). The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. British Journal of Pharmacology, 143(2), 235–245. https://doi.org/10.1038/sj.bjp.0705930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M., & Lisanti, M. P. (1996). Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. The Journal of Biological Chemistry, 271(16), 9690–9697.

    Article  CAS  PubMed  Google Scholar 

  28. Cohen, A. W., et al. (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. American Journal of Physiology. Cell Physiology, 284(2), C457–C474.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, H., et al. (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). The Journal of Biological Chemistry, 276(37), 35150–35158. https://doi.org/10.1074/jbc.M104530200.

    Article  CAS  PubMed  Google Scholar 

  30. Engelman, J. A., et al. (1998). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Letters, 428(3), 205–211. https://doi.org/10.1016/S0014-5793(98)00470-0.

    Article  CAS  PubMed  Google Scholar 

  31. Okada, S., et al. (2019). Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle, 18(11), 1268–1280. https://doi.org/10.1080/15384101.2019.1618118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goetz, J. G., Lajoie, P., Wiseman, S. M., & Nabi, I. R. (2008). Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Reviews, 27(4), 715–735.

    Article  CAS  PubMed  Google Scholar 

  33. Engelman, J. A., et al. (1998). Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. The Journal of Biological Chemistry, 273(32), 20448–20455. https://doi.org/10.1074/jbc.273.32.20448.

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi, K. et al. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers, Cancer Research.

  35. Nagy, J. A., et al. (1989). Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. BBA - Reviews on Cancer, 948(3), 305–326. https://doi.org/10.1016/0304-419X(89)90004-8.

    Article  CAS  PubMed  Google Scholar 

  36. Kołodziejczyk, J., & Ponczek, M. B. (2013). The role of fibrinogen, fibrin and fibrin (ogen) degradation products (FDPs) in tumor progression. Wspolczesna Onkologia. https://doi.org/10.5114/wo.2013.34611.

  37. Moriyama, T., Sasaki, K., Karasawa, K., Uchida, K., & Nitta, K. (2017). Intracellular transcytosis of albumin in glomerular endothelial cells after endocytosis through caveolae. Journal of Cellular Physiology, 232(12), 3565–3573. https://doi.org/10.1002/jcp.25817.

    Article  CAS  PubMed  Google Scholar 

  38. Stan, R. V. (2002). Structure and function of endothelial caveolae. Microscopy Research and Technique, 57(5), 350–364.

    Article  PubMed  Google Scholar 

  39. Woodman, S. E., et al. (2003). Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. The American Journal of Pathology, 162(6), 2059–2068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, M. I., Yu, J., Murata, T., & Sessa, W. C. (2007). Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Research, 67(6), 2849–2856. https://doi.org/10.1158/0008-5472.CAN-06-4082.

    Article  CAS  PubMed  Google Scholar 

  41. Schubert, W., et al. (2002). Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. The Journal of Biological Chemistry, 277(42), 40091–40098.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, J., et al. (2006). Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. The Journal of Clinical Investigation, 116(5), 1284–1291. https://doi.org/10.1172/JCI27100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murata, T., et al. (2007). Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. The Journal of Experimental Medicine, 204(10), 2373–2382. https://doi.org/10.1084/jem.20062340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lisanti, M. P., et al. (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: Implications for human disease. The Journal of Cell Biology. https://doi.org/10.1083/jcb.126.1.111.

  45. Schnitzer, J. E., Oh, P., Jacobson, B. S., & Dvorak, A. M. (1995). Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1759–1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peters, K. R., Carley, W. W., & Palade, G. E. (1985). Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. The Journal of Cell Biology. https://doi.org/10.1083/jcb.101.6.2233.

  47. Dvorak, H. F., Nagy, J. A., Dvorak, J. T., & Dvorak, A. M. (1988). Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. The American Journal of Pathology.

  48. Esser, S., Wolburg, K., Wolburg, H., Breier, G., Kurzchalia, T., & Risau, W. (1998). Vascular endothelial growth factor induces endothelial fenestrations in vitro. The Journal of Cell Biology, 140(4), 947–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sirois, M. G., & Edelman, E. R. (1997). VEGF effect on vascular permeability is mediated by synthesis of platelet-activating factor. The American Journal of Physiology, 272(6 Pt 2), H2746–H2756.

    CAS  PubMed  Google Scholar 

  50. Rotberg, M., Klintworth, G. K., & Crawford, J. B. (1984). Ocular vasodilation and angiogenesis in Potter’s syndrome. American Journal of Ophthalmology. https://doi.org/10.1016/0002-9394(84)90441-0.

  51. Thorgeirsson, U. P., Lindsay, C. K., Cottam, D. W., & Gomez, D. E. (1993). Tumor invasion, proteolysis, and angiogenesis. Journal of Neuro-Oncology. https://doi.org/10.1007/BF01050415.

  52. J. Folkman and R. Cotran (1976). Relation of vascular proliferation to tumor growth, International Review of Experimental Pathology.

  53. Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. https://doi.org/10.1038/376066a0.

  54. DeWever, J., et al. (2007). Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. The American Journal of Pathology. https://doi.org/10.2353/ajpath.2007.060968.

  55. Marchiando, A. M., et al. (2010). Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200902153.

  56. Boucrot, E., Howes, M. T., Kirchhausen, T., & Parton, R. G. (2011). Redistribution of caveolae during mitosis. Journal of Cell Science. https://doi.org/10.1242/jcs.076570.

  57. Echarri, A., et al. (2012). Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. Journal of Cell Science. https://doi.org/10.1242/jcs.090134.

  58. Noel, J., et al. (2013). PECAM-1 and caveolae form the mechanosensing complex necessary for NOX2 activation and angiogenic signaling with stopped flow in pulmonary endothelium. American Journal of Physiology—Lung Cellular and Molecular Physiology. https://doi.org/10.1152/ajplung.00123.2013.

  59. Dvorak, A. M., & Feng, D. (2001). The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. The Journal of Histochemistry and Cytochemistry, 49(4), 419–432.

    Article  CAS  PubMed  Google Scholar 

  60. Feng, D., Nagy, J. A., Hipp, J., Dvorak, H. F., & Dvorak, A. M. (1996). Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. The Journal of Experimental Medicine. https://doi.org/10.1084/jem.183.5.1981.

  61. Feng, D., Nagy, J. A., Pyne, K., Hammel, I., Dvorak, H. F., & Dvorak, A. M. (1999). Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation. https://doi.org/10.1080/713773925.

  62. Schubert, W., Frank, P. G., Razani, B., Park, D. S., Chow, C. W., & Lisanti, M. P. (2001). Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.C100613200.

  63. Bauer, P. M., et al. (2005). Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 204–209.

    Article  CAS  PubMed  Google Scholar 

  64. Majno, G., & Palade, G. E. (1961). Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. The Journal of Biophysical and Biochemical Cytology. https://doi.org/10.1083/jcb.11.3.571.

  65. Nagy, J. A., Benjamin, L., Zeng, H., Dvorak, A. M., & Dvorak, H. F. (2008). Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. https://doi.org/10.1007/s10456-008-9099-z.

  66. Nagy, J. A., et al. (2006). Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Laboratory Investigation. https://doi.org/10.1038/labinvest.3700436.

  67. Algire, G. H., Chalkley, H. W., Legallais, F. Y., & Park, H. D. (1945). Vasculae reactions of normal and malignant tissues in vivo. I. vascular reactions of mice to wounds and to normal and neoplastic transplants. Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/6.1.73.

  68. IDE and AG, Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber, AJR Am J Roentgenol, vol. 42, pp. 891–899, 1939.

  69. Folkman, J., Long, D. M., & Becker, F. F. (1963). Growth and metastasis of tumor in organ culture. Cancer. https://doi.org/10.1002/1097-0142(196304)16:4<453::AID-CNCR2820160407>3.0.CO;2-Y.

  70. Li, Z., Wermuth, P. J., Benn, B. S., Lisanti, M. P., & Jimenez, S. A. (2013). Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. The American Journal of Pathology. https://doi.org/10.1016/j.ajpath.2012.10.022.

  71. Bernatchez, P. N., Soker, S., & Sirois, M. G. (1999). Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. The Journal of Biological Chemistry, 274(43), 31047–31054.

    Article  CAS  PubMed  Google Scholar 

  72. Brouet, A., et al. (2005). Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. The FASEB Journal. https://doi.org/10.1096/fj.04-2682fje.

  73. C. Griffoni, E. Spisni, S. Santi, M. Riccio, T. Guarnieri, and V. Tomasi, Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo, Biochem. Biophys. Res. Commun., 2000, doi: https://doi.org/10.1006/bbrc.2000.3484.

  74. Hagiwara, Y., et al. (2000). Caveolin-3 deficiency causes muscle degeneration in mice. Human Molecular Genetics, 9(20), 3047–3054.

    Article  CAS  PubMed  Google Scholar 

  75. Minetti, C., et al. (1998). Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genetics, 18(4), 365–368. https://doi.org/10.1038/ng0498-365.

    Article  CAS  PubMed  Google Scholar 

  76. Galbiati, F., et al. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. The Journal of Biological Chemistry, 276(24), 21425–21433.

    Article  CAS  PubMed  Google Scholar 

  77. Galbiati, F., et al. (2000). Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9689–9694. https://doi.org/10.1073/pnas.160249097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strawn, L. M., et al. (1996). Flk-1 as a target for tumor growth inhibition. Cancer Research, 56(15), 3540–3545.

    CAS  PubMed  Google Scholar 

  79. Yu, J., et al. (2005). Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10999–11004. https://doi.org/10.1073/pnas.0501444102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aicher, A., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9(11), 1370–1376. https://doi.org/10.1038/nm948nm948.

    Article  CAS  PubMed  Google Scholar 

  81. Millauer, B., et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell. https://doi.org/10.1016/0092-8674(93)90573-9.

  82. Ku, D. D., Zaleski, J. K., Liu, S., & Brock, T. A. (1993). Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. The American Journal of Physiology - Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.1993.265.2.h586.

  83. Gelinas, D. S., Bernatchez, P. N., Rollin, S., Bazan, N. G., & Sirois, M. G. (2002). Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways. British Journal of Pharmacology, 137(7), 1021–1030. https://doi.org/10.1038/sj.bjp.0704956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A., & Sessa, W. C. (1997). Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. The Journal of Clinical Investigation, 100(12), 3131–3139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Connolly, D. T., et al. (1989). Human vascular permeability factor. Isolation from U937 cells. The Journal of Biological Chemistry, 264(33), 20017–20024.

    CAS  PubMed  Google Scholar 

  86. Bucci, M., et al. (2000). In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Medicine, 6(12), 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  87. Gratton, J. P., et al. (2003). Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell, 4(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  88. Folkman, J., Merler, E., Abernathy, C., & Williams, G. (1971). Isolation of a tumor factor responsible for angiogenesis. The Journal of Experimental Medicine, 133(2), 275–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McAuslan, B. R., & Hoffman, H. (1979). Endothelium stimulating factor from Walker carcinoma cells. Relation to tumor angiogenic factor. Experimental Cell Research. https://doi.org/10.1016/0014-4827(79)90347-1.

  90. Neufeld, G., & Kessler, O. (2006). Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer and Metastasis Reviews. https://doi.org/10.1007/s10555-006-9011-5.

  91. Keck, P. J., et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science (80-. )., 246(4935), 1309–1312.

    Article  CAS  Google Scholar 

  92. Connolly, D. T., et al. (1989). Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. The Journal of Clinical Investigation, 84(5), 1470–1478. https://doi.org/10.1172/JCI114322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shweiki, D., Itin, A., Soffer, D., & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. https://doi.org/10.1038/359843a0.

  94. O’Farrell, A. M., et al. (2003). An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clinical Cancer Research, 9(15), 5465–5476.

    PubMed  Google Scholar 

  95. Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N., & Williams, L. T. (1993). Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.90.16.7533.

  96. Kolesar, J. M. (2005). Bevacizumab: improved survival at what cost? American Journal of Health-System Pharmacy, 62(10), 1017.

    Article  PubMed  Google Scholar 

  97. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Reviews, 25(4), 581–611. https://doi.org/10.1210/er.2003-002725/4/581.

    Article  CAS  PubMed  Google Scholar 

  98. Rosenfeld, P. J., et al. (2006). Ranibizumab for neovascular age-related macular degeneration. The New England Journal of Medicine. https://doi.org/10.1056/NEJMoa054481.

  99. Chen, J., et al. (2002). VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. American Journal of Physiology-Cell Physiology. https://doi.org/10.1152/ajpcell.00292.2001.

  100. Feng, Y., Venema, V. J., Venema, R. C., Tsai, N., & Caldwell, R. B. (1999). VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1006/bbrc.1998.9790.

  101. Feng, Y., Venema, V. J., Venema, R. C., Tsai, N., Behzadian, M. A., & Caldwell, R. B. (1999). VEGF-induced permeability increase is mediated by caveolae. Investigative Ophthalmology & Visual Science, 40(1), 157–167.

    CAS  Google Scholar 

  102. Labrecque, L., Royal, I., Surprenant, D. S., Patterson, C., Gingras, D., & Beliveau, R. (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Molecular Biology of the Cell, 14(1), 334–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sonveaux, P., et al. (2004). Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circulation Research. https://doi.org/10.1161/01.RES.0000136344.27825.72.

  104. Liao, W. X., Feng, L., Zhang, H., Zheng, J., Moore, T. R., & Chen, D. B. (2009). Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Molecular Endocrinology. https://doi.org/10.1210/me.2008-0475.

  105. Liu, J., Razani, B., Tang, S., Terman, B. I., Ware, J. A., & Lisanti, M. P. (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. The Journal of Biological Chemistry, 274(22), 15781–15785.

    Article  CAS  PubMed  Google Scholar 

  106. Eliceiri, B. P., Paul, R., Schwartzberg, P. L., Hood, J. D., Leng, J., & Cheresh, D. A. (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular Cell. https://doi.org/10.1016/S1097-2765(00)80221-X.

  107. Chen, Z., et al. (2012). Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Molecular Biology of the Cell, 23(7), 1388–1398. https://doi.org/10.1091/mbc.E11-09-0811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zimnicka, A. M., et al. (2016). Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Molecular Biology of the Cell. https://doi.org/10.1091/mbc.E15-11-0756.

  109. Trane, P. D., Sharma, A. E. A., Saqib, U., Lau, K., van Petegem, F., Minshall, R. D., Roman, L. J., & Bernatchez, P. N. (2014). Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. The Journal of Biological Chemistry, 289(19), 13.

    Article  CAS  Google Scholar 

  110. Labrecque, L., et al. (2004). Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. The Journal of Biological Chemistry, 279(50), 52132–52140. https://doi.org/10.1074/jbc.M409617200.

    Article  CAS  PubMed  Google Scholar 

  111. Place, A. T., Chen, Z., Bakhshi, F. R., Liu, G., O’Bryan, J. P., & Minshall, R. D. (2011). Cooperative role of caveolin-1 and C-terminal Src kinase binding protein in C-terminal Src kinase-mediated negative regulation of C-Src. Molecular Pharmacology. https://doi.org/10.1124/mol.111.073957.

  112. Grande-García, A., et al. (2007). Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200701006.

  113. Celus, W., et al. (2017). Loss of caveolin-1 in metastasis-associated macrophages drives lung metastatic growth through increased angiogenesis. Cell Reports. https://doi.org/10.1016/j.celrep.2017.11.034.

  114. Tian, Y., Gawlak, G., O’Donnell, J. J., Birukova, A. A., & Birukov, K. G. (2016). Activation of vascular endothelial growth factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M115.690487.

  115. Cipitria, A., & Salmeron-Sanchez, M. (2017). Mechanotransduction and growth factor signalling to engineer cellular microenvironments. Advanced Healthcare Materials. https://doi.org/10.1002/adhm.201700052.

  116. Garcia-Cardena, G., et al. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. The Journal of Biological Chemistry, 272(41), 25437–25440.

    Article  CAS  PubMed  Google Scholar 

  117. Feron, O., Belhassen, L., Kobzik, L., Smith, T. W., Kelly, R. A., & Michel, T. (1996). Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. The Journal of Biological Chemistry, 271(37), 22810–22814.

    Article  CAS  PubMed  Google Scholar 

  118. Griffith, T. M., Edwards, D. H., Lewis, M. J., Newby, A. C., & Henderson, A. H. (1984). The nature of endothelium-derived vascular relaxant factor. Nature, 308(5960), 645–647.

    Article  CAS  PubMed  Google Scholar 

  119. Saliez, J., et al. (2008). Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation, 117(8), 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  120. Gruetter, C. A., Barry, B. K., McNamara, D. B., Gruetter, D. Y., Kadowitz, P. J., Ignarro, L. (1979). Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. Journal of Cyclic Nucleotide Research, 5(3), 211–24.

  121. Fukumura, D., et al. (2001). Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proceedings of the National Academy of Sciences of the United States of America, 98(5), 2604–2609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. van Haperen, R., et al. (2003). Functional expression of endothelial nitric oxide synthase fused to green fluorescent protein in transgenic mice. The American Journal of Pathology, 163(4), 1677–1686. https://doi.org/10.1016/S0002-9440(10)63524-9.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sharma, A., et al. (2015). Direct eNOS activation provides atheroprotection in diabetes-accelerated atherosclerosis. Diabetes. https://doi.org/10.2337/db15-0472.

  124. Murohara, T., et al. (1998). Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation. https://doi.org/10.1161/01.CIR.97.1.99.

  125. Bernatchez, P. N., Bauer, P. M., Yu, J., Prendergast, J. S., He, P., & Sessa, W. C. (2005). Dissecting the molecular control of endothelial NO synthase by caveolin-1 using cell-permeable peptides. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 761–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morais, C., Ebrahem, Q., Anand-Apte, B., & Parat, M. O. (2012). Altered angiogenesis in caveolin-1 gene-deficient mice is restored by ablation of endothelial nitric oxide synthase. The American Journal of Pathology. https://doi.org/10.1016/j.ajpath.2011.12.018.

  127. Griffith, T. M., Edwards, D. H., Davies, R. L., & Henderson, A. H. (1989). The role of EDRF in flow distribution: A microangiographic study of the rabbit isolated ear. Microvascular Research. https://doi.org/10.1016/0026-2862(89)90035-6.

  128. Fulton, D., et al. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 399(6736), 597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., & Zeiher, A. M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. https://doi.org/10.1038/21224.

  130. Garcia-Cardena, G., Oh, P., Liu, J., Schnitzer, J. E., & Sessa, W. C. (1996). Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proceedings of the National Academy of Sciences of the United States of America, 93(13), 6448–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shaul, P. W., et al. (1996). Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae. The Journal of Biological Chemistry, 271(11), 6518–6522.

    Article  CAS  PubMed  Google Scholar 

  132. Liu, J., & Sessa, W. C. (1994). Identification of covalently bound amino-terminal myristic acid in endothelial nitric oxide synthase. The Journal of Biological Chemistry, 269(16), 11691–11694.

    CAS  PubMed  Google Scholar 

  133. Sessa, W. C., et al. (1995). The Golgi association of endothelial nitric oxide synthase is necessary for the efficient synthesis of nitric oxide. The Journal of Biological Chemistry, 270(30), 17641–17644.

    Article  CAS  PubMed  Google Scholar 

  134. Sowa, G., Pypaert, M., & Sessa, W. C. (2001). Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 14072–14077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. https://doi.org/10.1038/333664a0.

  136. M. A. Tayeh and M. A. Marletta (1989). Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. Journal of Biological Chemistry.

  137. Michel, J. B., Feron, O., Sacks, D., & Michel, T. (1997). Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. The Journal of Biological Chemistry, 272(25), 15583–15586.

    Article  CAS  PubMed  Google Scholar 

  138. Michel, J. B., Feron, O., Sase, K., Prabhakar, P., & Michel, T. (1997). Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. The Journal of Biological Chemistry, 272(41), 25907–25912.

    Article  CAS  PubMed  Google Scholar 

  139. Gratton, J. P., Fontana, J., O’Connor, D. S., Garcia-Cardena, G., McCabe, T. J., & Sessa, W. C. (2000). Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. The Journal of Biological Chemistry, 275(29), 22268–22272.

    Article  CAS  PubMed  Google Scholar 

  140. Garcia-Cardena, G., et al. (1998). Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature, 392(6678), 821–824.

    Article  CAS  PubMed  Google Scholar 

  141. Garcia-Cardena, G., Fan, R., Stern, D. F., Liu, J., & Sessa, W. C. (1996). Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. The Journal of Biological Chemistry, 271(44), 27237–27240.

    Article  CAS  PubMed  Google Scholar 

  142. Ju, H., Zou, R., Venema, V. J., & Venema, R. C. (1997). Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. The Journal of Biological Chemistry, 272(30), 18522–18525.

    Article  CAS  PubMed  Google Scholar 

  143. Ghosh, S., Gachhui, R., Crooks, C., Wu, C., Lisanti, M. P., & Stuehr, D. J. (1998). Interaction between caveolin-1 and the reductase domain of endothelial nitric-oxide synthase. Consequences for catalysis. The Journal of Biological Chemistry, 273(35), 22267–22271.

    Article  CAS  PubMed  Google Scholar 

  144. Collins, B. M., Davis, M. J., Hancock, J. F., & Parton, R. G. (2012). tructure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Developmental Cell. https://doi.org/10.1016/j.devcel.2012.06.012.

  145. Parton, R. G., & Richards, A. A. (2003). Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic, 4(11), 724–738.

    Article  CAS  PubMed  Google Scholar 

  146. Parton, R. G., & Del Pozo, M. A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/nrm3512.

  147. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., & Prochiantz, A. (1996). Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J. Biol. Chem. https://doi.org/10.1074/jbc.271.30.18188.

  148. Derossi, D., Chassaing, G., & Prochiantz, A. (1998). Trojan peptides: the penetratin system for intracellular delivery. Trends in Cell Biology. https://doi.org/10.1016/S0962-8924(98)80017-2.

  149. Schmitz, M., Zerr, I., & Althaus, H. H. (2011). Effect of cavtratin, a caveolin-1 scaffolding domain peptide, on oligodendroglial signaling cascades. Cellular and Molecular Neurobiology. https://doi.org/10.1007/s10571-011-9694-1.

  150. Rodriguez-Feo, J. A., et al. (2008). Caveolin-1 influences vascular protease act́ivity and is a potential stabilizing factor in human atherosclerotic disease. PLoS One. https://doi.org/10.1371/journal.pone.0002612.

  151. Marudamuthu, A. S., et al. (2019). Caveolin-1–derived peptide limits development of pulmonary fibrosis. Science Translational Medicine, 11(522). https://doi.org/10.1126/scitranslmed.aat2848.

  152. Bernatchez, P., Sharma, A., Bauer, P. M., Marin, E., & Sessa, W. C. (2011). A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. The Journal of Clinical Investigation, 121(9), 3747–3755. https://doi.org/10.1172/JCI44778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kraehling, J. R., et al. (2016). Uncoupling caveolae from intracellular signaling in vivo. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.115.307767.

  154. Sinha, B., et al. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413. https://doi.org/10.1016/j.cell.2010.12.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sandor, G. G., et al. (2015). A randomized, double blind pilot study to assess the effects of losartan vs. atenolol on the biophysical properties of the aorta in patients with Marfan and Loeys-Dietz syndromes. International Journal of Cardiology, 179, 470–475. https://doi.org/10.1016/j.ijcard.2014.11.082.

    Article  PubMed  Google Scholar 

  156. Rizzo, V., Morton, C., DePaola, N., Schnitzer, J. E., & Davies, P. F. (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. American Journal of Physiology. Heart and Circulatory Physiology, 285(4), H1720–H1729.

    Article  CAS  PubMed  Google Scholar 

  157. Rizzo, V., Sung, A., Oh, P., & Schnitzer, J. E. (1998). Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. The Journal of Biological Chemistry, 273(41), 26323–26329.

    Article  CAS  PubMed  Google Scholar 

  158. Rizzo, V., McIntosh, D. P., Oh, P., & Schnitzer, J. E. (1998). In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. The Journal of Biological Chemistry, 273(52), 34724–34729.

    Article  CAS  PubMed  Google Scholar 

  159. E. Tzima et al., A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, 2005, doi: https://doi.org/10.1038/nature03952.

  160. Konerding, M. A., Fait, E., & Gaumann, A. (2001). 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. British Journal of Cancer. https://doi.org/10.1054/bjoc.2001.1809.

  161. Tozer, G. M., Lewis, S., Michalowski, A., & Aber, V. (1990). The relationship between regional variations in blood flow and histology in a transplanted rat fibrosarcoma. British Journal of Cancer. https://doi.org/10.1038/bjc.1990.46.

  162. Kakolyris, S., et al. (2000). Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39. British Journal of Cancer. https://doi.org/10.1054/bjoc.1999.1010.

  163. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D., & Keshet, E. (1999). Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI5028.

  164. Kerbel, R., & Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nature Reviews Cancer. https://doi.org/10.1038/nrc905.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Bernatchez.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernatchez, P. Endothelial caveolin and its scaffolding domain in cancer. Cancer Metastasis Rev 39, 471–483 (2020). https://doi.org/10.1007/s10555-020-09895-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09895-6

Keywords

Navigation