Skip to main content

Advertisement

Log in

Role of the host stroma in cancer and its therapeutic significance

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Current cancer research focuses mainly upon the cancer cells in malignant tumours and is providing a growing database about aberrations in their genetic composition. However, tumours also contain non-cancerous host tissue, referred to as the stroma, which plays an active and indispensable role in tumour growth and influences the virulence of the neoplasm towards the host. Many cell types inhabit the stroma, amidst apparently inert fibrous and viscous matrix material, composed of complex polysaccharides, proteins and other molecules. Actually, all of these elements are in constant turnover, causing unpredictable evolution in the properties of the community. This article provides pathologic observations and data on reciprocal interactions between these stromal and neoplastic components of tumours and how they change during the course of the disease. Malignant progression depends upon dauntingly intricate communications between different specialised lineages within the cellular society, which enable rapid adaptation to changing circumstances. Opportunistic misuse of such communication networks enables tumour cells to recruit and incorporate adjacent normal stroma into their midst, so that they may grow, infiltrate and parasitise the host. The absolute dependency of primary tumours and metastases on their diverse stromal components for survival and their insatiable need to continuously recruit more stroma to support expansion, renders them vulnerable to strategies capable of disrupting the cellular interactions involved. This dependency is of critical importance for cancer therapy research, and proposed methods for turning this parasitic behaviour of tumours against themselves are suggested below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18.

    PubMed  CAS  Google Scholar 

  2. Yamagiwa, K., Ichikawa, K., cited by Yamagiwa KaI, K. (1918). Experimental study of the pathogenesis of carcinoma. Journal of Cancer Research 3, 1–29.

  3. Orr, J. W. (1938). The changes antecedent to tumour formation during the treatment of mouse skin with carcinogenic hydrocarbons. Journal of Pathology and Bacteriology, 46, 495–515.

    Google Scholar 

  4. Billingham, R. E., Orr, J. W., & Woodhouse, D. L. (1951). Transplantation od skin components during chemical carcinogenesis with 20-methylcholanthrene. British Journal of Cancer, 5, 417–432.

    PubMed  CAS  Google Scholar 

  5. Marchant, J., & Orr, J. W. (1953). Further attempts to analyse the role of epidermis and deeper tissues in experimental chemical carcinogenesis by transplantation and other method. British Journal of Cancer, 7, 329–341.

    PubMed  CAS  Google Scholar 

  6. Orr, J. W., & Spencer, A. T. (1972). Transplantation studies of the role of the stroma in epidermal carcinogenesis. In D. Tarin (Ed.), Tissue interactions in carcinogenesis (pp. 291–303). London: Academic.

    Google Scholar 

  7. Tarin, D. (2012). Inappropriate gene expression in human cancer and its far-reaching biological and clinical significance. Cancer Metastasis Reviews, 31, 21–39.

    PubMed  CAS  Google Scholar 

  8. Pelosof, L. C., & Gerber, D. E. (2010). Paraneoplastic syndromes: an approach to diagnosis and treatment. Mayo Clinic Proceedings Mayo Clinic, 85, 838–854.

    PubMed  Google Scholar 

  9. Darnell, R., & Posner, J. (2011). Paraneoplastic syndromes. Oxford: Oxford University Press.

    Google Scholar 

  10. Spemann, H. (1938). Embryonic development and induction. New Haven: Yale University Press.

    Google Scholar 

  11. Grobstein, C. (1967). Mechanisms of organogenetic tissue interaction. National Cancer Institute Monograph, 26, 279–299.

    PubMed  CAS  Google Scholar 

  12. Saxén, L. (1972). Interactive mechanisms in morphogenesis. In D. Tarin (Ed.), Tissue interactions in carcinogenesis (pp. 49–80). London: Academic.

    Google Scholar 

  13. Kratchwil, K. (2001). Epithelial mesenchymal interactions. http://onlinelibrarywileycom/doi/101038/npgels0001141/full. Accessed 12 April 2013

  14. Franks, T. J., Colby, T. V., Travis, W. D., et al. (2008). Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proceedings of the American Thoracic Society, 5, 763–766.

    PubMed  Google Scholar 

  15. Beers, M. F., & Morrisey, E. E. (2011). The three R’s of lung health and disease: repair, remodeling, and regeneration. The Journal of Clinical Investigation, 121, 2065–2073.

    PubMed  CAS  Google Scholar 

  16. Cardoso, W. V., & Lu, J. (2006). Regulation of early lung morphogenesis: questions, facts and controversies. Development, 133, 1611–1624.

    PubMed  CAS  Google Scholar 

  17. Cardoso, W. V., & Whitsett, J. A. (2008). Resident cellular components of the lung: developmental aspects. Proceedings of the American Thoracic Society, 5, 767–771.

    PubMed  Google Scholar 

  18. Grobstein, C. (1953). Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature, 172, 869–870.

    PubMed  CAS  Google Scholar 

  19. Kratochwil, K. (1972). Tissue interaction during embryonic development. In D. Tarin (Ed.), Tissue interactions in carcinogenesis (pp. 1–47). London: Academic.

    Google Scholar 

  20. Millar, S. E. (2002). Molecular mechanisms regulating hair follicle development. The Journal of Investigative Dermatology, 118, 216–225.

    PubMed  CAS  Google Scholar 

  21. Zorn, A.M. (2008). Liver development. In StemBook. Cambridge, MA. http://www.ncbi.nlm.nih.gov/books/NBK27068/pdf/Liver_development.pdf. Accessed 12 April 2013

  22. Landsman, L., Nijagal, A., Whitchurch, T. J., et al. (2011). Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biology, 9, e1001143.

    PubMed  CAS  Google Scholar 

  23. Tabin, C., & Wolpert, L. (2007). Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes & Development, 21, 1433–1442.

    CAS  Google Scholar 

  24. Hölldobler, B., & Wilson, E. (2008). The superorganism: the beauty, elegance, and strangeness of insect societies. New York: W.W. Norton Inc.

    Google Scholar 

  25. Corning, P. (2002). The re-emergence of emergence: a venerable concept in search of a theory. Complexity, 7, 18–30.

    Google Scholar 

  26. Arp, R. (2008). Life and the homeostatic organization view of biological phenomena. Cosmos and History: The Journal of Natural and Social Philosophy, 4, 260–282.

    Google Scholar 

  27. Tarin, D. (2011). Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Seminars in Cancer Biology, 21, 72–82.

    PubMed  CAS  Google Scholar 

  28. Meilhac, S. M., Adams, R. J., Morris, S. A., et al. (2009). Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Developmental Biology, 331, 210–221.

    PubMed  CAS  Google Scholar 

  29. Rinn, J. L., Bondre, C., Gladstone, H. B., et al. (2006). Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genetics, 2, e119.

    PubMed  Google Scholar 

  30. Shannon, J. M., & Hyatt, B. A. (2004). Epithelial–mesenchymal interactions in the developing lung. Annual Review of Physiology, 66, 625–645.

    PubMed  CAS  Google Scholar 

  31. Billingham, R. E., & Silvers, W. K. (1963). The origin and conservation of epidermal specificities. The New England Journal of Medicine, 268, 539–545. concl.

    PubMed  CAS  Google Scholar 

  32. Billingham, R., & Silvers, W. (1968). Dermoepidermal interactions and epithelial specificity. In R. Fleischmajer & R. Billingham (Eds.), Epithelial–mesenchymal interactions (pp. 252–266). Baltimore: Williams and Wilkins.

    Google Scholar 

  33. Cunha, G. R., Fujii, H., Neubauer, B. L., et al. (1983). Epithelial–mesenchymal interactions in prostatic development. I. Morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder. The Journal of Cell Biology, 96, 1662–1670.

    PubMed  CAS  Google Scholar 

  34. Cunha, G. R., Hayward, S. W., & Wang, Y. Z. (2002). Role of stroma in carcinogenesis of the prostate. Differentiation, 70, 473–485.

    PubMed  Google Scholar 

  35. Dawe, C. (1972). Epithelial–mesenchymal interactions in relation to the genesis of polyoma virus-induced tumors of mouse salivary gland. In D. Tarin (Ed.), Tissue interactions in carcinogenesis (pp. 305–358). London: Academic.

    Google Scholar 

  36. Tarin, D., Price, J. E., Kettlewell, M. G., et al. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Research, 44, 3584–3592.

    PubMed  CAS  Google Scholar 

  37. Suzuki, M., Mose, E. S., Montel, V., et al. (2006). Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. The American Journal of Pathology, 169, 673–681.

    PubMed  CAS  Google Scholar 

  38. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. The Lancet, i, 571–573.

    Google Scholar 

  39. Hart, I. R., & Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Research, 40, 2281–2287.

    PubMed  CAS  Google Scholar 

  40. Goodison, S., Kawai, K., Hihara, J., et al. (2003). Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clinical Cancer Research, 9, 3808–3814.

    PubMed  CAS  Google Scholar 

  41. Bresalier, R. S., Raper, S. E., Hujanen, E. S., et al. (1987). A new animal model for human colon cancer metastasis. International Journal of Cancer, 39, 625–630.

    CAS  Google Scholar 

  42. Morikawa, K., Walker, S. M., Nakajima, M., et al. (1988). Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Research, 48, 6863–6871.

    PubMed  CAS  Google Scholar 

  43. Naito, S., von Eschenbach, A. C., Giavazzi, R., et al. (1986). Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Research, 46, 4109–4115.

    PubMed  CAS  Google Scholar 

  44. Stephenson, R. A., Dinney, C. P., Gohji, K., et al. (1992). Metastatic model for human prostate cancer using orthotopic implantation in nude mice. Journal of the National Cancer Institute, 84, 951–957.

    PubMed  CAS  Google Scholar 

  45. Montel, V., Mose, E. S., & Tarin, D. (2006). Tumor–stromal interactions reciprocally modulate gene expression patterns during carcinogenesis and metastasis. International Journal of Cancer Journal International du Cancer, 119, 251–263.

    PubMed  CAS  Google Scholar 

  46. Bao, L., Pigott, R., Matsumura, Y., et al. (1993). Correlation of VLA-4 integrin expression with metastatic potential in various human tumour cell lines. Differentiation, 52, 239–246.

    PubMed  CAS  Google Scholar 

  47. Tarin, D., & Croft, C. B. (1970). Ultrastructural studies of wound healing in mouse skin. II. Dermo-epidermal interrelationships. Journal of Anatomy, 106, 79–91.

    PubMed  CAS  Google Scholar 

  48. Croft, C. B., & Tarin, D. (1970). Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour. Journal of Anatomy, 106, 63–77.

    PubMed  CAS  Google Scholar 

  49. Cowell, T. (1972). Control of epithelial invasion by connective tissue during embedding of the mouse ovum. In D. Tarin (Ed.), Tissue interactions in carcinogenesis. London: Academic.

    Google Scholar 

  50. Konijeti, R., Rajfer, J., & Askari, A. (2009). Placenta percreta and the urologist. Reviews in Urology, 11, 173–176.

    PubMed  Google Scholar 

  51. Tarin, D. (1968). Further electron microscopic studies on the mechanism of carcinogenesis: the specificity of the changes in carcinogen-treated mouse skin. International Journal of Cancer Journal International du Cancer, 3, 734–742.

    PubMed  CAS  Google Scholar 

  52. Tarin, D. (1969). Fine structure of murine mammary tumours: the relationship between epithelium and connective tissue in neoplasms induced by various agents. British Journal of Cancer, 23, 417–425.

    PubMed  CAS  Google Scholar 

  53. Tarin, D. (1972). Morphological studies on the mechanism of carcinogenesis. In D. Tarin (Ed.), Tissue interactions in carcinogenesis (pp. 227–289). London: Academic.

    Google Scholar 

  54. Brand, K. G., Buoen, L. C., Johnson, K. H., et al. (1975). Etiological factors, stages, and the role of the foreign body in foreign body tumorigenesis: a review. Cancer Research, 35, 279–286.

    PubMed  CAS  Google Scholar 

  55. Buoen, L. C., Brand, I., & Brand, K. G. (1975). Foreign-body tumorigenesis: in vitro isolation and expansion of preneoplastic clonal cell populations. Journal of the National Cancer Institute, 55, 721–723.

    PubMed  CAS  Google Scholar 

  56. Karp, R. D., Johnson, K. H., Buoen, L. C., et al. (1973). Tumorigenesis by Millipore filters in mice: histology and ultrastructure of tissue reactions as related to pore size. Journal of the National Cancer Institute, 51, 1275–1285.

    PubMed  CAS  Google Scholar 

  57. Tarin, D. (2012). Clinical and biological implications of the tumor microenvironment. Cancer Microenvironment, 5, 95–112.

    CAS  Google Scholar 

  58. Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.

    PubMed  CAS  Google Scholar 

  59. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119, 1420–1428.

    PubMed  CAS  Google Scholar 

  60. Mani, S. A., Guo, W., Liao, M. J., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.

    PubMed  CAS  Google Scholar 

  61. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9, 265–273.

    PubMed  CAS  Google Scholar 

  62. Thompson, E. W., Newgreen, D. F., & Tarin, D. (2005). Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Research, 65, 5991–5995. discussion 5995.

    PubMed  CAS  Google Scholar 

  63. Kang, Y., & Massague, J. (2004). Epithelial–mesenchymal transitions: twist in development and metastasis. Cell, 118, 277–279.

    PubMed  CAS  Google Scholar 

  64. Zeng, Q., Li, W., Lu, D., et al. (2012). CD146, an epithelial–mesenchymal transition inducer, is associated with triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 1127–1132.

    PubMed  CAS  Google Scholar 

  65. Trimboli, A. J., Fukino, K., de Bruin, A., et al. (2008). Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Research, 68, 937–945.

    PubMed  CAS  Google Scholar 

  66. Thiery, J. P., Acloque, H., Huang, R. Y., et al. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139, 871–890.

    PubMed  CAS  Google Scholar 

  67. Trelstad, R. L., Hay, E. D., & Revel, J. D. (1967). Cell contact during early morphogenesis in the chick embryo. Developmental Biology, 16, 78–106.

    PubMed  CAS  Google Scholar 

  68. Hay, E. (1968). Organization and fine structure of epithelium and mesenchyme in the developing chick embryo. In R. Fleischmajer & R. Billingham (Eds.), Epithelial mesenchymal interactions. Baltimore: Williams and Wilkins.

    Google Scholar 

  69. Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.

    PubMed  CAS  Google Scholar 

  70. Tarin, D. (1971). Histological features of neural induction in Xenopus laevis. Journal of Embryology and Experimental Morphology, 26, 543–570.

    PubMed  CAS  Google Scholar 

  71. Tarin, D. (1971). Scanning electron microscopical studies of the embryonic surface during gastrulation and neurulation in Xenopus laevis. Journal of Anatomy, 109, 535–547.

    PubMed  CAS  Google Scholar 

  72. Tarin, D. (1972). Ultrastructural features of neural induction in Xenopus laevis. Journal of Anatomy, 111, 1–28.

    PubMed  CAS  Google Scholar 

  73. Tarin, D., & Sturdee, A. P. (1971). Early limb development of Xenopus laevis. Journal of Embryology and Experimental Morphology, 26, 169–179.

    PubMed  CAS  Google Scholar 

  74. Tarin, D., & Sturdee, A. P. (1974). Ultrastructural features of ectodermal–mesenchymal relationships in the developing limb of Xenopus laevis. Journal of Embryology and Experimental Morphology, 31, 287–303.

    PubMed  CAS  Google Scholar 

  75. Toivonen, S., Tarin, D., & Saxen, L. (1976). The transmission of morphogenetic signals from amphibian mesoderm to ectoderm in primary induction. Differentiation, 5, 49–55.

    PubMed  CAS  Google Scholar 

  76. Tarin, D. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Research, 65, 5996–6000.

    PubMed  CAS  Google Scholar 

  77. Gise, A., & Pu, W. T. (2012). Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circulation Research, 110, 1628–1645.

    Google Scholar 

  78. Korsching, E., Packeisen, J., Liedtke, C., et al. (2005). The origin of vimentin expression in invasive breast cancer: epithelial–mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? The Journal of Pathology, 206, 451–457.

    PubMed  CAS  Google Scholar 

  79. Gilbert, S. (2000). Developmental biology (6th edition ed). Sinauer Associates: Sunderland, MA, Chapter 14: Intermediate Mesoderm section Available from: http://www.ncbi.nlm.nih.gov/books/NBK10089/.

  80. Sucheston, M. E., & Cannon, M. S. (1968). Development of zonular patterns in the human adrenal gland. Journal of Morphology, 126, 477–491.

    PubMed  CAS  Google Scholar 

  81. Kempna, P., & Fluck, C. E. (2008). Adrenal gland development and defects. Best Practice & Research. Clinical Endocrinology & Metabolism, 22, 77–93.

    CAS  Google Scholar 

  82. Satoh, M. (1991). Histogenesis and organogenesis of the gonad in human embryos. Journal of Anatomy, 177, 85–107.

    PubMed  CAS  Google Scholar 

  83. Kalluri, R., & Neilson, E. G. (2003). Epithelial–mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112, 1776–1784.

    PubMed  CAS  Google Scholar 

  84. Osterreicher, C. H., Penz-Osterreicher, M., Grivennikov, S. I., et al. (2011). Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proceedings of the National Academy of Sciences of the United States of America, 108, 308–313.

    PubMed  CAS  Google Scholar 

  85. Humphreys, B. D., Lin, S. L., Kobayashi, A., et al. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. The American Journal of Pathology, 176, 85–97.

    PubMed  CAS  Google Scholar 

  86. Tomaskovic-Crook, E., Thompson, E. W., & Thiery, J. P. (2009). Epithelial to mesenchymal transition and breast cancer. Breast Cancer Research, 11, 213.

    PubMed  Google Scholar 

  87. May, C. D., Sphyris, N., Evans, K. W., et al. (2011). Epithelial–mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Research, 13, 202.

    PubMed  Google Scholar 

  88. Yang, J., Mani, S. A., Donaher, J. L., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.

    PubMed  CAS  Google Scholar 

  89. Chui, M. H. (2012). Insights into cancer metastasis from a clinicopathologic perspective: epithelial mesenchymal transition is not a necessary step. International Journal of Cancer Journal International du Cancer. doi:10.1002/ijc.27745.

    PubMed  Google Scholar 

  90. Cardiff, R. D. (2010). The pathology of EMT in mouse mammary tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 15, 225–233.

    PubMed  Google Scholar 

  91. Hennessy, B. T., Gonzalez-Angulo, A. M., Stemke-Hale, K., et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Research, 69, 4116–4124.

    PubMed  CAS  Google Scholar 

  92. Taube, J. H., Herschkowitz, J. I., Komurov, K., et al. (2010). Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 107, 15449–15454.

    PubMed  CAS  Google Scholar 

  93. Brabletz, T. (2012). To differentiate or not—routes towards metastasis. Nature Reviews. Cancer, 12, 425–436.

    PubMed  CAS  Google Scholar 

  94. Brabletz, T., Jung, A., Reu, S., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98, 10356–10361.

    PubMed  CAS  Google Scholar 

  95. Kubiak, R., & Szadowska, A. (1997). Invasive lobular carcinoma: correlations between morphological features, vimentin expression, oestrogen receptor status and prognosis. The Breast, 6, 89–96.

    Google Scholar 

  96. Armstrong, A. J., Marengo, M. S., Oltean, S., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.

    PubMed  CAS  Google Scholar 

  97. Powell, A. A., Talasaz, A. H., Zhang, H., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One, 7, e33788.

    PubMed  CAS  Google Scholar 

  98. Sun, Y., Campisi, J., Higano, C., et al. (2012).Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Medicine 18, 1359–1368.

    Google Scholar 

  99. O’Mahony, F. C., Faratian, D., Varley, J., et al. (2012). The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma. PLoS One, 7, e31557.

    PubMed  Google Scholar 

  100. Leroy, P., & Mostov, K. E. (2007). Slug is required for cell survival during partial epithelial–mesenchymal transition of HGF-induced tubulogenesis. Molecular Biology of the Cell, 18, 1943–1952.

    PubMed  CAS  Google Scholar 

  101. Ledford, H. (2011). Cancer theory faces doubts. Nature, 472, 273.

    PubMed  CAS  Google Scholar 

  102. Hugo, H., Ackland, M. L., Blick, T., et al. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.

    PubMed  CAS  Google Scholar 

  103. Christiansen, J. J., & Rajasekaran, A. K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Research, 66, 8319–8326.

    PubMed  CAS  Google Scholar 

  104. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.

    PubMed  CAS  Google Scholar 

  105. Wilmut, I., Schnieke, A. E., McWhir, J., et al. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385, 810–813.

    PubMed  CAS  Google Scholar 

  106. Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells, Tissues, Organs, 185, 7–19.

    PubMed  Google Scholar 

  107. Tarin, D. (1967). Sequential electron microscopical study of experimental mouse skin carcinogenesis. International Journal of Cancer, 2, 195–211.

    CAS  Google Scholar 

  108. Tarin, D. (1976). Cellular interactions in neoplasia. In L. Weiss (Ed.), Fundamental aspects of metastasis (pp. 151–187). Amsterdam: North Holland Publishing Co.

    Google Scholar 

  109. Sugino, T., Gorham, H., Yoshida, K., et al. (1996). Progressive loss of CD44 gene expression in invasive bladder cancer. The American Journal of Pathology, 149, 873–882.

    PubMed  CAS  Google Scholar 

  110. Viadana, E., Bross, I. D., & Pickren, J. W. (1973). An autopsy study of some routes of dissemination of cancer of the breast. British Journal of Cancer, 27, 336–340.

    PubMed  CAS  Google Scholar 

  111. Noltenius, C., & Noltenius, H. (1985). Dormant tumor cells in liver and brain. An autopsy study on metastasizing tumors. Pathology Research and Practice, 179, 504–511.

    CAS  Google Scholar 

  112. Suzuki, M., Mose, E., Galloy, C., et al. (2007). Osteopontin gene expression determines spontaneous metastatic performance of orthotopic human breast cancer xenografts. The American Journal of Pathology, 171, 682–692.

    PubMed  CAS  Google Scholar 

  113. Urquidi, V., Sloan, D., Kawai, K., et al. (2002). Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical Cancer Research, 8, 61–74.

    PubMed  CAS  Google Scholar 

  114. Agrawal, D., Chen, T., Irby, R., et al. (2002). Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. Journal of the National Cancer Institute, 94, 513–521.

    PubMed  CAS  Google Scholar 

  115. Ang, C., Chambers, A. F., Tuck, A. B., et al. (2005). Plasma osteopontin levels are predictive of disease stage in patients with transitional cell carcinoma of the bladder. BJU International, 96, 803–805.

    PubMed  CAS  Google Scholar 

  116. Donati, V., Boldrini, L., Dell’Omodarme, M., et al. (2005). Osteopontin expression and prognostic significance in non-small cell lung cancer. Clinical Cancer Research, 11, 6459–6465.

    PubMed  CAS  Google Scholar 

  117. Jang, T., Savarese, T., Low, H. P., et al. (2006). Osteopontin expression in intratumoral astrocytes marks tumor progression in gliomas induced by prenatal exposure to N-ethyl-N-nitrosourea. The American Journal of Pathology, 168, 1676–1685.

    PubMed  CAS  Google Scholar 

  118. Matusan, K., Dordevic, G., Stipic, D., et al. (2006). Osteopontin expression correlates with prognostic variables and survival in clear cell renal cell carcinoma. Journal of Surgical Oncology, 94, 325–331.

    PubMed  CAS  Google Scholar 

  119. Roland, P. Y., Kelly, F. J., Kulwicki, C. Y., et al. (2004). The benefits of a gynecologic oncologist: a pattern of care study for endometrial cancer treatment. Gynecologic Oncology, 93, 125–130.

    PubMed  CAS  Google Scholar 

  120. Wai, P. Y., & Kuo, P. C. (2004). The role of osteopontin in tumor metastasis. The Journal of Surgical Research, 121, 228–241.

    PubMed  CAS  Google Scholar 

  121. Feng, W., McCabe, N. P., Mahabeleshwar, G. H., et al. (2008). The angiogenic response is dictated by beta3 integrin on bone marrow-derived cells. The Journal of Cell Biology, 183, 1145–1157.

    PubMed  CAS  Google Scholar 

  122. Kelly, P. N., Dakic, A., Adams, J. M., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317, 337.

    PubMed  CAS  Google Scholar 

  123. Price, J. E., Syms, A. J., Wallace, J. S., et al. (1986). Cellular immortality, clonogenicity, tumorigenicity and the metastatic phenotype. European Journal of Cancer & Clinical Oncology, 22, 349–355.

    CAS  Google Scholar 

  124. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8, 755–768.

    PubMed  CAS  Google Scholar 

  125. Wang, G. X., Zhan, Y. A., Hu, H. L., et al. (2012). Mesenchymal stem cells modified to express interferon-beta inhibit the growth of prostate cancer in a mouse model. The Journal of International Medical Research, 40, 317–327.

    PubMed  CAS  Google Scholar 

  126. Schrodinger, E. (1944). What is life (p. 194). Cambridge, UK: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

The author acknowledges with gratitude the valuable comments, suggestions and discussions provided by G. G. Miklos PhD and D. L. Darling MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarin, D. Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev 32, 553–566 (2013). https://doi.org/10.1007/s10555-013-9438-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9438-4

Keywords

Navigation