Skip to main content

Advertisement

Log in

Hide and seek: tell-tale signs of breast cancer lurking in the blood

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Breast cancer treatment is improving due to the introduction of new drugs, guided by molecular testing of the primary tumour for mutations/oncogenic drivers (e.g. HER2 gene amplification). However, tumour tissue is not always available for molecular analysis, intra-tumoural heterogeneity is common and the “cancer genome” is known to evolve with time, particularly following treatment as resistance develops. After resection, those patients with only residual micrometastases are likely to be cured but those with radiologically detectable overt disease are not. Thus, the discovery of blood test(s) that could (1) alert clinicians to early primary or recurrent disease and (2) monitor response to treatment could impact significantly on mortality. Towards this, we and others have focused on molecular profiling of circulating nucleic acids isolated from plasma, both cell-free DNA (cfDNA) and microRNAs, and the relationship of these to circulating tumour cells (CTCs). This review considers the utility of each as circulating biomarkers in breast cancer with particular emphasis on the bioinformatic tools available to support molecular profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Taplin, S., Abraham, L., Barlow, W. E., Fenton, J. J., Berns, E. A., Carney, P. A., et al. (2008). Mammography facility characteristics associated with interpretive accuracy of screening mammography. Journal of the National Cancer Institute, 100(12), 876–887.

    Article  PubMed  Google Scholar 

  2. Harris, L., Fritsche, H., Mennel, R., Norton, L., Ravdin, P., Taube, S., et al. (2007). American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. Journal of Clinical Oncology, 25(33), 5287–5312.

    Article  PubMed  CAS  Google Scholar 

  3. O'Hanlon, D. M., Kerin, M. J., Kent, P., Maher, D., Grimes, H., & Given, H. F. (1995). An evaluation of preoperative CA 15-3 measurement in primary breast carcinoma. British Journal of Cancer, 71(6), 1288–1291.

    Article  PubMed  Google Scholar 

  4. Piccart-Gebhart, M. J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., et al. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. The New England Journal of Medicine, 353(16), 1659–1672.

    Article  PubMed  CAS  Google Scholar 

  5. Uehara, M., Kinoshita, T., Hojo, T., Akashi-Tanaka, S., Iwamoto, E., & Fukutomi, T. (2008). Long-term prognostic study of carcinoembryonic antigen (CEA) and carbohydrate antigen 15-3 (CA 15-3) in breast cancer. International Journal of Clinical Oncology, 13(5), 447–451.

    Article  PubMed  CAS  Google Scholar 

  6. Weigel, M. T., & Dowsett, M. (2010). Current and emerging biomarkers in breast cancer: prognosis and prediction. Endocrine-Related Cancer, 17(4), R245–R262.

    Article  PubMed  CAS  Google Scholar 

  7. Karrison, T. G., Ferguson, D. J., & Meier, P. (1999). Dormancy of mammary carcinoma after mastectomy. Journal of the National Cancer Institute, 91(1), 80–85.

    Article  PubMed  CAS  Google Scholar 

  8. Fisher, B., Jeong, J.H., Dignam, J., Anderson, S., Mamounas, E., Wickerham, D. L., et al. (2001). Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage I breast cancer. Journal of National Cancer Institute Monographs, 2001(30), 62–66.

  9. Wallgren, A., Bonetti, M., Gelber, R. D., Goldhirsch, A., Castiglione-Gertsch, M., Holmberg, S. B., et al. (2003). Risk factors for locoregional recurrence among breast cancer patients: results from International Breast Cancer Study Group Trials I through VII. Journal of Clinical Oncology, 21(7), 1205–1213.

    Article  PubMed  CAS  Google Scholar 

  10. Meltzer, A. (1990). Dormancy and breast cancer. Journal of Surgical Oncology, 43(3), 181–188.

    Article  PubMed  CAS  Google Scholar 

  11. Murray, C. (1995). Tumour dormancy: not so sleepy after all. Nature Medicine, 1(2), 117–118.

    Article  PubMed  CAS  Google Scholar 

  12. Kuukasjarvi, T., Karhu, R., Tanner, M., Kahkonen, M., Schaffer, A., Nupponen, N., et al. (1997). Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Research, 57(8), 1597–1604.

    PubMed  CAS  Google Scholar 

  13. Gangnus, R., Langer, S., Breit, E., Pantel, K., & Speicher, M. R. (2004). Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clinical Cancer Research, 10(10), 3457–3464.

    Article  PubMed  CAS  Google Scholar 

  14. Stoecklein, N. H., & Klein, C. A. (2010). Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer, 126(3), 589–598.

    Article  CAS  Google Scholar 

  15. Levenson, V. V. (2007). Biomarkers for early detection of breast cancer: what, when, and where? Biochimica et Biophysica Acta, 1770(6), 847–856.

    Article  PubMed  CAS  Google Scholar 

  16. Mandel, P., & Metais, P. (1948). Les acides nucléiques du plasma sanguin chez l'homme. Comptes Rendus de l'Académie des Sciences de Paris, 142, 241–243.

    CAS  Google Scholar 

  17. Leon, S. A., Shapiro, B., Sklaroff, D. M., & Yaros, M. J. (1977). Free DNA in the serum of cancer patients and the effect of therapy. Cancer Research, 37(3), 646–650.

    PubMed  CAS  Google Scholar 

  18. Stroun, M., Anker, P., Lyautey, J., Lederrey, C., & Maurice, P. A. (1987). Isolation and characterization of DNA from the plasma of cancer patients. European Journal of Cancer & Clinical Oncology, 23(6), 707–712.

    Article  CAS  Google Scholar 

  19. Cherepanova, A. V., Tamkovich, S. N., Bryzgunova, O. E., Vlassov, V. V., & Laktionov, P. P. (2008). Deoxyribonuclease activity and circulating DNA concentration in blood plasma of patients with prostate tumors. Annals of the New York Academy of Sciences, 1137, 218–221.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, Z. H., Li, L. H., & Hua, D. (2006). Quantitative analysis of plasma circulating DNA at diagnosis and during follow-up of breast cancer patients. Cancer Letters, 243(1), 64–70.

    Article  PubMed  CAS  Google Scholar 

  21. Page, K., Powles, T., Slade, M. J., Tamburo de Bella, M., Walker, R. A., Coombes, R. C., et al. (2006). The importance of careful blood processing in isolation of cell-free DNA. Annals of the New York Academy of Sciences, 1075, 313–317.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, B. G., Huang, H. Y., Chen, Y. C., Bristow, R. E., Kassauei, K., Cheng, C. C., et al. (2003). Increased plasma DNA integrity in cancer patients. Cancer Research, 63(14), 3966–3968.

    PubMed  CAS  Google Scholar 

  23. Gong, B., Xue, J., Yu, J., Li, H., Hu, H., Yen, H., et al. (2012). Cell-free DNA in blood is a potential diagnostic biomarker of breast cancer. Oncology Letters, 3(4), 897–900.

    PubMed  CAS  Google Scholar 

  24. Zanetti-Dallenbach, R., Wight, E., Fan, A. X., Lapaire, O., Hahn, S., Holzgreve, W., et al. (2008). Positive correlation of cell-free DNA in plasma/serum in patients with malignant and benign breast disease. Anticancer Research, 28(2A), 921–925.

    PubMed  CAS  Google Scholar 

  25. Pathak, A. K., Bhutani, M., Kumar, S., Mohan, A., & Guleria, R. (2006). Circulating cell-free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool. Clinical Chemistry, 52(10), 1833–1842.

    PubMed  CAS  Google Scholar 

  26. Anker, P., Stroun, M., & Maurice, P. A. (1975). Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Research, 35(9), 2375–2382.

    PubMed  CAS  Google Scholar 

  27. Nawroz, H., Koch, W., Anker, P., Stroun, M., & Sidransky, D. (1996). Microsatellite alterations in serum DNA of head and neck cancer patients. Nature Medicine, 2(9), 1035–1037.

    Article  PubMed  CAS  Google Scholar 

  28. Alix-Panabieres, C., Schwarzenbach, H., & Pantel, K. (2012). Circulating tumor cells and circulating tumor DNA. Annual Review of Medicine, 63, 199–215.

    Article  PubMed  CAS  Google Scholar 

  29. Jung, K., Fleischhacker, M., & Rabien, A. (2010). Cell-free DNA in the blood as a solid tumor biomarker—a critical appraisal of the literature. Clinica Chimica Acta, 411(21–22), 1611–1624.

    Article  CAS  Google Scholar 

  30. Higgins, M. J., Jelovac, D., Barnathan, E., Blair, B., Slater, S., Powers, P., et al. (2012). Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clinical Cancer Research, 18(12), 3462–3469.

    Article  PubMed  CAS  Google Scholar 

  31. Board, R. E., Wardley, A. M., Dixon, J. M., Armstrong, A. C., Howell, S., Renshaw, L., et al. (2010). Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Research and Treatment, 120(2), 461–467.

    Article  PubMed  CAS  Google Scholar 

  32. Silva, J. M., Gonzalez, R., Dominguez, G., Garcia, J. M., Espana, P., & Bonilla, F. (1999). TP53 gene mutations in plasma DNA of cancer patients. Genes, Chromosomes & Cancer, 24(2), 160–161.

    Article  CAS  Google Scholar 

  33. Schwarzenbach, H., Muller, V., Stahmann, N., & Pantel, K. (2004). Detection and characterization of circulating microsatellite-DNA in blood of patients with breast cancer. Annals of the New York Academy of Sciences, 1022, 25–32.

    Article  PubMed  CAS  Google Scholar 

  34. Shaw, J. A., Smith, B. M., Walsh, T., Johnson, S., Primrose, L., Slade, M. J., et al. (2000). Microsatellite alterations plasma DNA of primary breast cancer patients. Clinical Cancer Research, 6(3), 1119–1124.

    PubMed  CAS  Google Scholar 

  35. Schwarzenbach, H., Eichelser, C., Kropidlowski, J., Janni, W., Rack, B., & Pantel, K. (2012). Loss of heterozygosity at tumor suppressor genes detectable on fractionated circulating cell-free tumor DNA as indicator of breast cancer progression. Clinical Cancer Research

  36. Yamamoto, N., Nakayama, T., Kajita, M., Miyake, T., Iwamoto, T., Kim, S. J., et al. (2012). Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARbeta2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay. Breast Cancer Research and Treatment, 132(1), 165–173.

    Article  PubMed  CAS  Google Scholar 

  37. Hoque, M. O., Feng, Q., Toure, P., Dem, A., Critchlow, C. W., Hawes, S. E., et al. (2006). Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. Journal of Clinical Oncology, 24(26), 4262–4269.

    Article  PubMed  CAS  Google Scholar 

  38. Sharma, G., Mirza, S., Parshad, R., Gupta, S. D., & Ralhan, R. (2012). DNA methylation of circulating DNA: a marker for monitoring efficacy of neoadjuvant chemotherapy in breast cancer patients. Tumour Biology. doi:10.1007/s13277-012-0443-y.

  39. Page, K., Hava, N., Ward, B., Brown, J., Guttery, D. S., Ruangpratheep, C., et al. (2011). Detection of HER2 amplification in circulating free DNA in patients with breast cancer. British Journal of Cancer, 104(8), 1342–1348.

    Article  PubMed  CAS  Google Scholar 

  40. Diaz, L. A., Jr., Williams, R. T., Wu, J., Kinde, I., Hecht, J. R., Berlin, J., et al. (2012). The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature, 486(7404), 537–540.

    PubMed  Google Scholar 

  41. Shaw, J. A., Page, K., Blighe, K., Hava, N., Guttery, D., Ward, B., et al. (2012). Genomic analysis of circulating cell-free DNA infers breast cancer dormancy. Genome Research, 22(2), 220–231.

    Article  PubMed  CAS  Google Scholar 

  42. Beck, J., Urnovitz, H. B., Mitchell, W. M., & Schutz, E. (2010). Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Molecular Cancer Research, 8(3), 335–342.

    Article  PubMed  CAS  Google Scholar 

  43. van de Wiel, M. A., Picard, F., van Wieringen, W. N., & Ylstra, B. (2011). Preprocessing and downstream analysis of microarray DNA copy number profiles. Briefings in Bioinformatics, 12(1), 10–21.

    Article  PubMed  CAS  Google Scholar 

  44. Ong, M., Mateo, J., Pope, L., Cassidy, A. M., Yap, T. A., Perkins, G., et al. (2012). Prospective study of oncogenic mutations in circulating cell-free DNA (cfDNA) using a multiplex sequencing platform for patient (pt) allocation to phase I clinical trials. Paper presented at the 2012 ASCO Annual Meeting

  45. Lam, H. Y. K., Clark, M. J., Chen, R., Chen, R., Natsoulis, G., O’Huallachain, M., et al. (2012). Performance comparison of whole-genome sequencing platforms. Nature Biotechnology, 30(1), 78–82.

    Article  CAS  Google Scholar 

  46. Archer, J., Baillie, G., Watson, J., Kellam, P., Rambaut, A., & Robertson, D. (2011). Characterizing Next Generation Sequencing Error and the Consequences for the Study of Intra-Patient Viral Diversity. Paper presented at the Eighteenth International Workshop on HIV Dynamics and Evolution, Galway, Republic of Ireland,

  47. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

    Article  PubMed  CAS  Google Scholar 

  48. He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522–531.

    Article  PubMed  CAS  Google Scholar 

  49. Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., Thomson, A. M., et al. (2006). A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 126(6), 1203–1217.

    Article  PubMed  CAS  Google Scholar 

  50. Bullrich, F., Fujii, H., Calin, G., Mabuchi, H., Negrini, M., Pekarsky, Y., et al. (2001). Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene. Cancer Research, 61(18), 6640–6648.

    PubMed  CAS  Google Scholar 

  51. Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., et al. (2006). The colorectal microRNAome. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3687–3692.

    Article  PubMed  CAS  Google Scholar 

  52. Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Journal of the American Medical Association, 299(4), 425–436.

    Article  PubMed  CAS  Google Scholar 

  53. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.

    Article  PubMed  CAS  Google Scholar 

  54. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., et al. (2008). MicroRNAs accurately identify cancer tissue origin. Nature Biotechnology, 26(4), 462–469.

    Article  PubMed  CAS  Google Scholar 

  55. Rosenwald, S., Gilad, S., Benjamin, S., Lebanony, D., Dromi, N., Faerman, A., et al. (2010). Validation of a microRNA-based qRT-PCR test for accurate identification of tumor tissue origin. Modern Pathology, 23(6), 814–823.

    Article  PubMed  CAS  Google Scholar 

  56. Mostert, B., Sieuwerts, A. M., Martens, J. W., & Sleijfer, S. (2011). Diagnostic applications of cell-free and circulating tumor cell-associated miRNAs in cancer patients. Expert Review of Molecular Diagnostics, 11(3), 259–275.

    PubMed  CAS  Google Scholar 

  57. Ferracin, M., Veronese, A., & Negrini, M. (2010). Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Review of Molecular Diagnostics, 10(3), 297–308.

    Article  PubMed  CAS  Google Scholar 

  58. Lodes, M. J., Caraballo, M., Suciu, D., Munro, S., Kumar, A., & Anderson, B. (2009). Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS One, 4(7), e6229.

    Article  PubMed  CAS  Google Scholar 

  59. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513–10518.

    Article  PubMed  CAS  Google Scholar 

  60. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., & Iwai, N. (2009). Plasma miR-208 as a biomarker of myocardial injury. Clinical Chemistry, 55(11), 1944–1949.

    Article  PubMed  CAS  Google Scholar 

  61. Hunter, M. P., Ismail, N., Zhang, X., Aguda, B. D., Lee, E. J., Yu, L., et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS One, 3(11), e3694.

    Article  PubMed  CAS  Google Scholar 

  62. Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry, 285(23), 17442–17452.

    Article  PubMed  CAS  Google Scholar 

  63. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.

    Article  PubMed  CAS  Google Scholar 

  64. Brase, J. C., Wuttig, D., Kuner, R., & Sultmann, H. (2010). Serum microRNAs as non-invasive biomarkers for cancer. Molecular Cancer, 9, 306.

    Article  PubMed  CAS  Google Scholar 

  65. Turchinovich, A., Weiz, L., & Burwinkel, B. (2012). Extracellular miRNAs: the mystery of their origin and function. Trends in Biochemical Sciences.

  66. Pigati, L., Yaddanapudi, S. C., Iyengar, R., Kim, D. J., Hearn, S. A., Danforth, D., et al. (2010). Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One, 5(10), e13515.

    Article  PubMed  CAS  Google Scholar 

  67. Pritchard, C. C., Kroh, E., Wood, B., Arroyo, J. D., Dougherty, K. J., Miyaji, M. M., et al. (2012). Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prevention Research (Philadelphia, Pa.), 5(3), 492–497.

    Article  CAS  Google Scholar 

  68. Wittmann, J., & Jack, H. M. (2010). Serum microRNAs as powerful cancer biomarkers. Biochimica et Biophysica Acta, 1806(2), 200–207.

    PubMed  CAS  Google Scholar 

  69. Heneghan, H. M., Miller, N., Lowery, A. J., Sweeney, K. J., Newell, J., & Kerin, M. J. (2010). Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Annals of Surgery, 251(3), 499–505.

    Article  PubMed  Google Scholar 

  70. Zhu, W., Qin, W., Atasoy, U., & Sauter, E. R. (2009). Circulating microRNAs in breast cancer and healthy subjects. BMC Research Notes, 2, 89.

    Article  PubMed  CAS  Google Scholar 

  71. Roth, C., Rack, B., Muller, V., Janni, W., Pantel, K., & Schwarzenbach, H. (2010). Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Research, 12(6), R90.

    Article  PubMed  CAS  Google Scholar 

  72. van Schooneveld, E., Wouters, M. C., Van der Auwera, I., Peeters, D. J., Wildiers, H., Van Dam, P. A., et al. (2012). Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Research, 14(1), R34.

    Article  PubMed  CAS  Google Scholar 

  73. Wu, X., Somlo, G., Yu, Y., Palomares, M. R., Li, A. X., Zhou, W., et al. (2012). De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. Journal of Translational Medicine, 10, 42.

    Article  PubMed  CAS  Google Scholar 

  74. Schrauder, M. G., Strick, R., Schulz-Wendtland, R., Strissel, P. L., Kahmann, L., Loehberg, C. R., et al. (2012). Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One, 7(1), e29770.

    Article  PubMed  CAS  Google Scholar 

  75. Carlsson, J., Helenius, G., Karlsson, M., Lubovac, Z., Andrén, O., Olsson, B., et al. (2010). Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genetics and Cytogenetics, 202(2), 71–75.

    Article  PubMed  CAS  Google Scholar 

  76. Appaiah, H. N., Goswami, C. P., Mina, L. A., Badve, S., Sledge, G. W., Jr., Liu, Y., et al. (2011). Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Research, 13(5), R86.

    Article  PubMed  CAS  Google Scholar 

  77. Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008). Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer's Disease, 14(1), 27–41.

    PubMed  CAS  Google Scholar 

  78. Mizuguchi, Y., Mishima, T., Yokomuro, S., Arima, Y., Kawahigashi, Y., Shigehara, K., et al. (2011). Sequencing and bioinformatics-based analyses of the microRNA transcriptome in hepatitis B–related hepatocellular carcinoma. PLoS One, 6(1), e15304.

    Article  PubMed  CAS  Google Scholar 

  79. Ge, Q., Li, H., Yang, Q., Lu, J., Tu, J., Bai, Y., et al. (2011). Sequencing circulating miRNA in maternal plasma with modified library preparation. Clinica Chimica Acta, 412(21–22), 1989–1994.

    Article  CAS  Google Scholar 

  80. Li, H., Guo, L., Wu, Q., Lu, J., Ge, Q., & Lu, Z. (2012). A comprehensive survey of maternal plasma miRNAs expression profiles using high-throughput sequencing. Clinica Chimica Acta, 413(5–6), 568–576.

    Article  CAS  Google Scholar 

  81. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(suppl 1), D140–D144.

    Article  PubMed  CAS  Google Scholar 

  82. Griffiths-Jones, S., Saini, H. K., van Dongen, S., & Enright, A. J. (2008). miRBase: tools for microRNA genomics. Nucleic Acids Research, 36(suppl 1), D154–D158.

    PubMed  CAS  Google Scholar 

  83. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  PubMed  CAS  Google Scholar 

  84. Team, R. D. C. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  85. Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics, 32(Suppl), 496–501.

    Article  PubMed  CAS  Google Scholar 

  86. Calza, S., Chen, S., & Pawitan, Y. (2010). LVSmiRNA: LVS normalization for Agilent miRNA data (R package version 1.4.0 ed.).

  87. Calza, S., Valentini, D., & Pawitan, Y. (2008). Normalization of oligonucleotide arrays based on the least-variant set of genes. BMC Bioinformatics, 9(1), 140.

    Article  PubMed  CAS  Google Scholar 

  88. López-Romero, P. AgiMicroRna: Processing and differential expression analysis of agilent microRNA chips (R package version 2.4.0 ed.).

  89. Gubian, S., Sewer, A., & PMP, S. A. (2010). ExiMiR: R functions for the normalization of Exiqon miRNA array data (R package version 1.2.0 ed.).

  90. Huovilainen, O. P., & Lahti, L. pint—R/Bioconductor package for pairwise integration of functional genomics data.

  91. Gentleman, R., & Falcon, S. microRNA: Data and functions for dealing with microRNAs (R package version 1.12.0 ed.).

  92. Favero, F. RmiR.Hs.miRNA: Various databases of microRNA Targets (R package version 1.0.6 ed.).

  93. Griffiths-Jones, S. (2004). The microRNA registry. Nucleic Acids Research, 32(suppl 1), D109–D111.

    Article  PubMed  CAS  Google Scholar 

  94. Kozomara, A., & Griffiths-Jones, S. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39(suppl 1), D152–D157.

    Article  PubMed  CAS  Google Scholar 

  95. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., & Marks, D. S. (2004). Human microRNA targets. PLoS Biology, 2(11), e363.

    Article  PubMed  CAS  Google Scholar 

  96. Papadopoulos, G. L., Reczko, M., Simossis, V. A., Sethupathy, P., & Hatzigeorgiou, A. G. (2009). The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Research, 37(suppl 1), D155–D158.

    Article  PubMed  CAS  Google Scholar 

  97. Wang, X., & El Naqa, I. M. (2008). Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics, 24(3), 325–332.

    Article  PubMed  CAS  Google Scholar 

  98. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., et al. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495–500.

    Article  PubMed  CAS  Google Scholar 

  99. Favero, F. RmiR: Package to work with miRNAs and miRNA targets with R (R package version 1.10.0 ed.).

  100. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2(8), 563–572.

    Article  PubMed  CAS  Google Scholar 

  101. Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418(6900), 823.

    Article  PubMed  CAS  Google Scholar 

  102. Husemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., et al. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.

    Article  PubMed  CAS  Google Scholar 

  103. Stott, S. L., Hsu, C. H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., et al. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18392–18397.

    Article  PubMed  CAS  Google Scholar 

  104. Hayashi, N., & Yamauchi, H. (2012). Role of circulating tumor cells and disseminated tumor cells in primary breast cancer. Breast Cancer, 19(2), 110–117.

    Article  PubMed  Google Scholar 

  105. Yu, M., Stott, S., Toner, M., Maheswaran, S., & Haber, D. A. (2011). Circulating tumor cells: approaches to isolation and characterization. The Journal of Cell Biology, 192(3), 373–382.

    Article  PubMed  CAS  Google Scholar 

  106. Powell, A. A., Talasaz, A. H., Zhang, H., Coram, M. A., Reddy, A., Deng, G., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One, 7(5), e33788.

    Article  PubMed  CAS  Google Scholar 

  107. Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clinical Cancer Research, 13(3), 920–928.

    Article  PubMed  CAS  Google Scholar 

  108. Vona, G., Sabile, A., Louha, M., Sitruk, V., Romana, S., Schutze, K., et al. (2000). Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. American Journal of Pathology, 156(1), 57–63.

    Article  PubMed  CAS  Google Scholar 

  109. Farace, F., Massard, C., Vimond, N., Drusch, F., Jacques, N., Billiot, F., et al. (2011). A direct comparison of cell search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. British Journal of Cancer, 105(6), 847–853.

    Article  PubMed  CAS  Google Scholar 

  110. Gertler, R., Rosenberg, R., Fuehrer, K., Dahm, M., Nekarda, H., & Siewert, J. R. (2003). Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results in Cancer Research, 162, 149–155.

    Article  PubMed  Google Scholar 

  111. Sieuwerts, A. M., Kraan, J., Bolt, J., van der Spoel, P., Elstrodt, F., Schutte, M., et al. (2009). Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101(1), 61–66.

    Article  PubMed  CAS  Google Scholar 

  112. Tibbe, A. G., Miller, M. C., & Terstappen, L. W. (2007). Statistical considerations for enumeration of circulating tumor cells. Cytometry. Part A, 71(3), 154–162.

    Article  Google Scholar 

  113. Goeminne, J. C., Guillaume, T., & Symann, M. (2000). Pitfalls in the detection of disseminated non-hematological tumor cells. Annals of Oncology, 11(7), 785–792.

    Article  PubMed  CAS  Google Scholar 

  114. Konigsberg, R., Obermayr, E., Bises, G., Pfeiler, G., Gneist, M., Wrba, F., et al. (2011). Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncologica, 50(5), 700–710.

    Article  PubMed  Google Scholar 

  115. Mikolajczyk, S. D., Millar, L. S., Tsinberg, P., Coutts, S. M., Zomorrodi, M., Pham, T., et al. (2011). Detection of EpCAM-negative and cytokeratin-negative circulating tumor cells in peripheral blood. Journal of Oncology, 2011, 252361.

    Article  PubMed  Google Scholar 

  116. Park, J.M., Lee, J.Y., Lee, J.G., Jeong, H., Oh, J.M., Kim, Y.J., et al. (2012). Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Analytical Chemistry

  117. Barriere, G., Riouallon, A., Renaudie, J., Tartary, M., & Rigaud, M. (2012). Mesenchymal characterization: alternative to simple CTC detection in two clinical trials. Anticancer Research, 32(8), 3363–3369.

    PubMed  Google Scholar 

  118. Friel, A. M., Corcoran, C., Crown, J., & O'Driscoll, L. (2010). Relevance of circulating tumor cells, extracellular nucleic acids, and exosomes in breast cancer. Breast Cancer Research and Treatment, 123(3), 613–625.

    Article  PubMed  CAS  Google Scholar 

  119. Stathopoulou, A., Ntoulia, M., Perraki, M., Apostolaki, S., Mavroudis, D., Malamos, N., et al. (2006). A highly specific real-time RT-PCR method for the quantitative determination of CK-19 mRNA positive cells in peripheral blood of patients with operable breast cancer. International Journal of Cancer, 119(7), 1654–1659.

    Article  CAS  Google Scholar 

  120. de Albuquerque, A., Kubisch, I., Ernst, D., Breier, G., Stamminger, G., Fersis, N., et al. (2012). Development of a molecular multimarker assay for the analysis of circulating tumor cells in adenocarcinoma patients. Clinical Laboratory, 58(5–6), 373–384.

    PubMed  Google Scholar 

  121. Pachmann, K., Camara, O., Kavallaris, A., Krauspe, S., Malarski, N., Gajda, M., et al. (2008). Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. Journal of Clinical Oncology, 26(8), 1208–1215.

    Article  PubMed  Google Scholar 

  122. Ignatiadis, M., Xenidis, N., Perraki, M., Apostolaki, S., Politaki, E., Kafousi, M., et al. (2007). Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. Journal of Clinical Oncology, 25(33), 5194–5202.

    Article  PubMed  Google Scholar 

  123. Pierga, J. Y., Bidard, F. C., Mathiot, C., Brain, E., Delaloge, S., Giachetti, S., et al. (2008). Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clinical Cancer Research, 14(21), 7004–7010.

    Article  PubMed  CAS  Google Scholar 

  124. Chen, X., Bonnefoi, H., Diebold-Berger, S., Lyautey, J., Lederrey, C., Faltin-Traub, E., et al. (1999). Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clinical Cancer Research, 5(9), 2297–2303.

    PubMed  CAS  Google Scholar 

  125. Schwarzenbach, H., Alix-Panabieres, C., Muller, I., Letang, N., Vendrell, J. P., Rebillard, X., et al. (2009). Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clinical Cancer Research, 15(3), 1032–1038.

    Article  PubMed  CAS  Google Scholar 

  126. Paris, P. L., Kobayashi, Y., Zhao, Q., Zeng, W., Sridharan, S., Fan, T., et al. (2009). Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Letters, 277(2), 164–173.

    Article  PubMed  CAS  Google Scholar 

  127. Stathopoulou, A., Mavroudis, D., Perraki, M., Apostolaki, S., Vlachonikolis, I., Lianidou, E., et al. (2003). Molecular detection of cancer cells in the peripheral blood of patients with breast cancer: comparison of CK-19, CEA and maspin as detection markers. Anticancer Research, 23(2C), 1883–1890.

    PubMed  CAS  Google Scholar 

  128. Stathopoulou, A., Vlachonikolis, I., Mavroudis, D., Perraki, M., Kouroussis, C., Apostolaki, S., et al. (2002). Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. Journal of Clinical Oncology, 20(16), 3404–3412.

    Article  PubMed  CAS  Google Scholar 

  129. Xenidis, N., Ignatiadis, M., Apostolaki, S., Perraki, M., Kalbakis, K., Agelaki, S., et al. (2009). Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. Journal of Clinical Oncology, 27(13), 2177–2184.

    Article  PubMed  CAS  Google Scholar 

  130. Xenidis, N., Perraki, M., Kafousi, M., Apostolaki, S., Bolonaki, I., Stathopoulou, A., et al. (2006). Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. Journal of Clinical Oncology, 24(23), 3756–3762.

    Article  PubMed  CAS  Google Scholar 

  131. Sieuwerts, A. M., Mostert, B., Bolt-de Vries, J., Peeters, D., de Jongh, F. E., Stouthard, J. M., et al. (2011). mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clinical Cancer Research, 17(11), 3600–3618.

    Article  PubMed  CAS  Google Scholar 

  132. Madhavan, D., Zucknick, M., Wallwiener, M., Cuk, K., Modugno, C., Scharpff, M., et al. (2012). Circulating microRNAs as surrogate markers for circulating tumour cells and prognostic markers in metastatic breast cancer. Clinical Cancer Research

  133. Payne, R. E., Hava, N. L., Page, K., Blighe, K., Ward, B., Slade, M., et al. (2012). The presence of disseminated tumour cells in the bone marrow is inversely related to circulating free DNA in plasma in breast cancer dormancy. British Journal of Cancer, 106(2), 375–382.

    Article  PubMed  CAS  Google Scholar 

  134. Mazlum, N., Özer, A., & Mazlum, S. (1999). Interpretation of water quality data by principal components. Turkish Journal of Engineering and Environmental Sciences, 23, 19–26.

    CAS  Google Scholar 

  135. Joliffe, I. T. (2002). Principal components analysis (2nd ed.). NY: Springer.

    Google Scholar 

  136. Chakravarty, M. M., Aleong, R., Leonard, G., Perron, M., Pike, G. B., Richer, L., et al. (2011). Automated analysis of craniofacial morphology using magnetic resonance images. PLoS One, 6(5), e20241.

    Article  PubMed  CAS  Google Scholar 

  137. Bicciato, S., Luchini, A., & Di Bello, C. (2003). PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics, 19(5), 571–578.

    Article  PubMed  CAS  Google Scholar 

  138. Meng, Z., Zaykin, D. V., Xu, C.-F., Wagner, M., & Ehm, M. G. (2003). Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes. The American Journal of Human Genetics, 73(1), 115–130.

    Article  CAS  Google Scholar 

  139. Lin, Z., & Altman, R. B. (2004). Finding haplotype tagging SNPs by use of principal components analysis. The American Journal of Human Genetics, 75(5), 850–861.

    Article  CAS  Google Scholar 

  140. Parsons, K. J., Cooper, W. J., & Albertson, R. C. (2009). Limits of principal components analysis for producing a common trait space: implications for inferring selection, contingency, and chance in evolution. PLoS One, 4(11), e7957.

    Article  PubMed  CAS  Google Scholar 

  141. Chatfield, C., & Collins, A. J. (1980). Introduction to multivariate analysis. NY: Chapman and Hall.

    Google Scholar 

  142. Kaiser, H. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151.

    Article  Google Scholar 

  143. Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 629–637.

    Google Scholar 

  144. Mahloch, J. L. (1974). Multivariate techniques for water quality analysis. Journal of the Environmental Engineering Division, 100(5), 1119–1132.

    CAS  Google Scholar 

  145. Madsen, T. (2007). Multivariate data analysis with PCA, CA and MS. http://www.archaeoinfo.dk/PDF%20files/Multivariate%20data%20analysis.pdf. Accessed 15 Oct 2012.

  146. Greenberg, P. A., Hortobagyi, G. N., Smith, T. L., Ziegler, L. D., Frye, D. K., & Buzdar, A. U. (1996). Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. Journal of Clinical Oncology, 14(8), 2197–2205.

    PubMed  CAS  Google Scholar 

  147. Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352.

    PubMed  CAS  Google Scholar 

  148. Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33(1), 49–54.

    Article  PubMed  CAS  Google Scholar 

  149. van’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.

    Article  Google Scholar 

  150. Weigelt, B., Peterse, J. L., & van't Veer, L. J. (2005). Breast cancer metastasis: markers and models. Nature Reviews. Cancer, 5(8), 591–602.

    Article  PubMed  CAS  Google Scholar 

  151. Landemaine, T., Jackson, A., Bellahcene, A., Rucci, N., Sin, S., Abad, B. M., et al. (2008). A six-gene signature predicting breast cancer lung metastasis. Cancer Research, 68(15), 6092–6099.

    Article  PubMed  CAS  Google Scholar 

  152. Driouch, K., Landemaine, T., Sin, S., Wang, S., & Lidereau, R. (2007). Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clinical & Experimental Metastasis, 24(8), 575–585.

    Article  CAS  Google Scholar 

  153. van de Vijver, M. J., He, Y. D., van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. The New England Journal of Medicine, 347(25), 1999–2009.

    Article  PubMed  Google Scholar 

  154. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.

    Article  PubMed  CAS  Google Scholar 

  155. Smid, M., Wang, Y., Klijn, J. G., Sieuwerts, A. M., Zhang, Y., Atkins, D., et al. (2006). Genes associated with breast cancer metastatic to bone. Journal of Clinical Oncology, 24(15), 2261–2267.

    Article  PubMed  CAS  Google Scholar 

  156. Bae, Y. K., Shim, Y. R., Choi, J. H., Kim, M. J., Gabrielson, E., Lee, S. J., et al. (2005). Gene promoter hypermethylation in tumors and plasma of breast cancer patients. Cancer Research and Treatment, 37(4), 233–240.

    Article  PubMed  Google Scholar 

  157. Urquidi, V., & Goodison, S. (2007). Genomic signatures of breast cancer metastasis. Cytogenetic and Genome Research, 118(2–4), 116–129.

    Article  PubMed  CAS  Google Scholar 

  158. Kallioniemi, A., Kallioniemi, O. P., Piper, J., Tanner, M., Stokke, T., Chen, L., et al. (1994). Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2156–2160.

    Article  PubMed  CAS  Google Scholar 

  159. Han, W., Han, M. R., Kang, J. J., Bae, J. Y., Lee, J. H., Bae, Y. J., et al. (2006). Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer. BMC Cancer, 6, 92.

    Article  PubMed  CAS  Google Scholar 

  160. Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16), 7065–7070.

    Article  PubMed  CAS  Google Scholar 

  161. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.

    Article  PubMed  CAS  Google Scholar 

  162. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.

    Article  PubMed  CAS  Google Scholar 

  163. Shi, M., Liu, D., Duan, H., Shen, B., & Guo, N. (2010). Metastasis-related miRNAs, active players in breast cancer invasion, and metastasis. Cancer and Metastasis Reviews, 29(4), 785–799.

    Article  PubMed  CAS  Google Scholar 

  164. Molloy, T. J., Roepman, P., Naume, B., & van't Veer, L. J. (2012). A prognostic gene expression profile that predicts circulating tumor cell presence in breast cancer patients. PLoS One, 7(2), e32426.

    Article  PubMed  CAS  Google Scholar 

  165. Alitalo, A., & Detmar, M. (2012). Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene, 31(42), 4499–4508.

    Google Scholar 

  166. Montel, V., Huang, T. Y., Mose, E., Pestonjamasp, K., & Tarin, D. (2005). Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. American Journal of Pathology, 166(5), 1565–1579.

    Article  PubMed  CAS  Google Scholar 

  167. Pandis, N., Teixeira, M. R., Adeyinka, A., Rizou, H., Bardi, G., Mertens, F., et al. (1998). Cytogenetic comparison of primary tumors and lymph node metastases in breast cancer patients. Genes, Chromosomes & Cancer, 22(2), 122–129.

    Article  CAS  Google Scholar 

  168. Smeets, A., Daemen, A., Vanden Bempt, I., Gevaert, O., Claes, B., Wildiers, H., et al. (2011). Prediction of lymph node involvement in breast cancer from primary tumor tissue using gene expression profiling and miRNAs. Breast Cancer Research and Treatment, 129(3), 767–776.

    Article  PubMed  CAS  Google Scholar 

  169. Schwarzenbach, H., Milde-Langosch, K., Steinbach, B., Muller, V., & Pantel, K. (2012). Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat, 134(3), 933–941.

    Google Scholar 

  170. Schwarzenbach, H., Muller, V., Beeger, C., Gottberg, M., Stahmann, N., & Pantel, K. (2007). A critical evaluation of loss of heterozygosity detected in tumor tissues, blood serum and bone marrow plasma from patients with breast cancer. Breast Cancer Research, 9(5), R66.

    Article  PubMed  CAS  Google Scholar 

  171. Barekati, Z., Radpour, R., Lu, Q., Bitzer, J., Zheng, H., Toniolo, P., et al. (2012). Methylation signature of lymph node metastases in breast cancer patients. BMC Cancer, 12, 244.

    Article  PubMed  CAS  Google Scholar 

  172. Gobel, G., Auer, D., Gaugg, I., Schneitter, A., Lesche, R., Muller-Holzner, E., et al. (2011). Prognostic significance of methylated RASSF1A and PITX2 genes in blood- and bone marrow plasma of breast cancer patients. Breast Cancer Research and Treatment, 130(1), 109–117.

    Article  PubMed  CAS  Google Scholar 

  173. Matuschek, C., Bolke, E., Lammering, G., Gerber, P. A., Peiper, M., Budach, W., et al. (2010). Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. European Journal of Medical Research, 15(7), 277–286.

    PubMed  CAS  Google Scholar 

  174. Van der Auwera, I., Elst, H. J., Van Laere, S. J., Maes, H., Huget, P., van Dam, P., et al. (2009). The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. British Journal of Cancer, 100(8), 1277–1286.

    Article  PubMed  CAS  Google Scholar 

  175. Dulaimi, E., Hillinck, J., Ibanez de Caceres, I., Al-Saleem, T., & Cairns, P. (2004). Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clinical Cancer Research, 10(18 Pt 1), 6189–6193.

    Article  PubMed  CAS  Google Scholar 

  176. Martinez-Galan, J., Torres, B., Del Moral, R., Munoz-Gamez, J. A., Martin-Oliva, D., Villalobos, M., et al. (2008). Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biology & Therapy, 7(6), 958–965.

    Article  CAS  Google Scholar 

  177. Papadopoulou, E., Davilas, E., Sotiriou, V., Georgakopoulos, E., Georgakopoulou, S., Koliopanos, A., et al. (2006). Cell-free DNA and RNA in plasma as a new molecular marker for prostate and breast cancer. Annals of the New York Academy of Sciences, 1075, 235–243.

    Article  PubMed  CAS  Google Scholar 

  178. Cuk, K., Zucknick, M., Heil, J., Madhavan, D., Schott, S., Turchinovich, A., et al. (2012). Circulating microRNAs in plasma as early detection markers for breast cancer. International Journal of Cancer.

  179. Cookson, V. J., Bentley, M. A., Hogan, B. V., Horgan, K., Hayward, B. E., Hazelwood, L. D., et al. (2012). Circulating microRNA profiles reflect the presence of breast tumours but not the profiles of microRNAs within the tumours. Cell Oncology (Dordrecht), 35(4), 301–308.

    Article  CAS  Google Scholar 

  180. Wang, H., Tan, G., Dong, L., Cheng, L., Li, K., Wang, Z., et al. (2012). Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One, 7(4), e34210.

    Article  PubMed  CAS  Google Scholar 

  181. Jung, E. J., Santarpia, L., Kim, J., Esteva, F. J., Moretti, E., Buzdar, A. U., et al. (2012). Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer, 118(10), 2603–2614.

    Article  PubMed  CAS  Google Scholar 

  182. Zhao, R., Wu, J., Jia, W., Gong, C., Yu, F., Ren, Z., et al. (2011). Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie, 34(12), 675–680.

    Article  PubMed  CAS  Google Scholar 

  183. Zhao, H., Shen, J., Medico, L., Wang, D., Ambrosone, C. B., & Liu, S. (2010). A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One, 5(10), e13735.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David S. Guttery or Jacqueline A. Shaw.

Additional information

David S. Guttery, Kevin Blighe, and Karen Page contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttery, D.S., Blighe, K., Page, K. et al. Hide and seek: tell-tale signs of breast cancer lurking in the blood. Cancer Metastasis Rev 32, 289–302 (2013). https://doi.org/10.1007/s10555-012-9414-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9414-4

Keywords

Navigation