Skip to main content

Advertisement

Log in

Abstract

The integrin αvβ3 plays an important role in angiogenesis and tumor metastasis. It is expressed on activated endothelial cells as well as some tumor cells. Therefore it is a promising imaging target as a potential surrogate parameter of angiogenic activity. Molecular imaging of αvβ3 expression could potentially facilitate response evaluation of antiangiogenic drugs (e. g. bevacizumab) or aid in selecting and monitoring patients receiving humanized monoclonal antibody therapies directed against αvβ3 (EMD121974). Therefore many different approaches for imaging of αvβ3 expression have been studied in the recent years, including positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance imaging (MRI), optical imaging and ultrasound using targeted microbubbles. While optical imaging techniques lend themselves for preclinical studies, PET and SPECT using the αvβ3 specific tracers [18F]galacto-RGD and [99mTc]NC100692 are the only techniques up to now which have been successfully used in patients. The various advantages and disadvantages of several imaging techniques will be discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annual Review of Cell and Developmental Biology, 12, 697–715.

    PubMed  CAS  Google Scholar 

  2. Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature Reviews Cancer, 2, 91–100.

    PubMed  Google Scholar 

  3. Xiong, J. P., Stehle, T., Zhang, R., et al. (2002). Crystal structure of the extracellular segment of integrin αvβ3 in complex with an Arg–Gly–Asp ligand. Science, 296, 151–155.

    PubMed  CAS  Google Scholar 

  4. Cai, W., & Chen, X. (2006). Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anti-Cancer Agents in Medicinal Chemistry, 6, 407–428.

    PubMed  CAS  Google Scholar 

  5. Hynes, R. O. (2002). A reevaluation of integrins as regulators of angiogenesis. Nature Medicine, 8, 918–921.

    PubMed  CAS  Google Scholar 

  6. Kerbel, R. S. (2006). Antiangiogenic therapy: A universal chemosensitization strategy for cancer? Science, 312, 1171–1175.

    PubMed  CAS  Google Scholar 

  7. Hurwitz, H., Fehrenbacher, L., Novotny, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–2342.

    PubMed  CAS  Google Scholar 

  8. Nabors, L. B., Mikkelsen, T., Rosenfeld, S. S., Hochberg, F., Akella, N. S., Fisher, J. D., et al. (2007). Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. Journal of Clinical Oncology, 25, 1651–1657.

    PubMed  CAS  Google Scholar 

  9. Jaffe, C. C. (2006). Measures of response: RECIST, WHO, and new alternatives. Journal of Clinical Oncology, 24, 3245–3251.

    PubMed  Google Scholar 

  10. Tortora, G., Melisi, D., & Ciardiello, F. (2004). Angiogenesis: A target for cancer therapy. Current Pharmaceutical Design, 10, 11–26.

    PubMed  CAS  Google Scholar 

  11. Galbraith, S. M. (2003). Antivascular cancer treatments: imaging biomarkers in pharmaceutical drug development. British Journal of Radiology, 76, 83–86.

    Google Scholar 

  12. Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. New England Journal of Medicine, 285, 1182–1186.

    PubMed  CAS  Google Scholar 

  13. Ribatti, D., Vacca, A., & Dammacco, F. (1999). The role of the vascular phase in solid tumor growth: a historical review. Neoplasia, 1, 293–302.

    PubMed  CAS  Google Scholar 

  14. Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386, 671–674.

    PubMed  CAS  Google Scholar 

  15. Ellis, L. M., Liu, W., Fan, F., Jung, Y. D., Reinmuth, N., Stoeltzing, O., et al. (2002). Synopsis of angiogenesis inhibitors in oncology. Oncology, 16, 14–22.

    PubMed  Google Scholar 

  16. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.

    PubMed  CAS  Google Scholar 

  17. Hagedorn, M., & Bikfalvi, A. (2000). Target molecules for anti-angiogenic therapy: From basic research to clinical trials. Critical Reviews in Oncology/Hematology, 34, 89–110.

    PubMed  CAS  Google Scholar 

  18. Kuwano, M., Fukushi, J., Okamoto, M., Nishie, A., Goto, H., Ishibashi, T., et al. (2001). Angiogenesis factors. Internal Medicine, 40, 565–572.

    PubMed  CAS  Google Scholar 

  19. Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 9, 267–285.

    PubMed  CAS  Google Scholar 

  20. Eliceiri, B. P., & Cheresh, D. A. (2000). Role of alpha v integrins during angiogenesis. Cancer Journal From Scientific American, 6, 245–249.

    Google Scholar 

  21. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407, 242–248.

    PubMed  CAS  Google Scholar 

  22. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6, 389–395.

    PubMed  CAS  Google Scholar 

  23. Auguste, P., Lemiere, S., & Larrieu-Lahargue, F. (2005). Molecular mechanisms of tumor vascularization. Critical Reviews in Oncology/Hematology, 54(1), 53–61.

    PubMed  Google Scholar 

  24. Weber, W. A. (2006). Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology, 24(20), 3282–3292.

    PubMed  CAS  Google Scholar 

  25. Jaffer, F. A., & Weissleder, R. (2005). Molecular imaging in the clinical arena. JAMA, 293, 855–862.

    PubMed  CAS  Google Scholar 

  26. Matsumoto, K., Kitamura, K., Mizuta, T., et al. (2006). Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high sensitivity and high resolution PET camera evaluated with the NEMA NU 2-2001 standard. Journal of Nuclear Medicine, 47, 83–90.

    PubMed  Google Scholar 

  27. Chatziioannou, A. F. (2005). Instrumentation for molecular imaging in preclinical research: Micro-PET and Micro-SPECT. Proceedings of the American Thoracic Society, 2, 533–536.

    PubMed  Google Scholar 

  28. Haubner, R., Finsinger, D., & Kessler, H. (1997). Stereoisomeric peptide libraries and peptidomimetics for designing selective inhibitors of the αvβ3 integrin for a new cancer therapy. Angewandte Chemie International Edition in English, 36, 1374–1389.

    CAS  Google Scholar 

  29. Haubner, R., Wester, H. J., Reuning, U., et al. (1999). Radiolabeled αvβ3 integrin antagonists: A new class of tracers for tumor targeting. Journal of Nuclear Medicine, 40, 1061–1071.

    PubMed  CAS  Google Scholar 

  30. Haubner, R., Wester, H. J., Weber, W. A., et al. (2001). Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Research, 61, 1781–1785.

    PubMed  CAS  Google Scholar 

  31. Haubner, R. (2006). αvβ3-Integrin imaging: A new approach to characterise angiogenesis? European Journal of Nuclear Medicine and Molecular Imaging, 33, 54–63.

    PubMed  Google Scholar 

  32. Harris, J. M., Martin, N. E., & Modi, M. (2001). PEGylation: A novel process for modifying pharmacokinetics. Clinical Pharmacokinetics, 40, 539–551.

    PubMed  CAS  Google Scholar 

  33. Chen, X., Park, R., Shahinian, A. H., et al. (2004). Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nuclear Medicine and Biology, 31, 11–19.

    PubMed  CAS  Google Scholar 

  34. van Hagen, P. M., Breeman, W. A., Bernard, H. F., et al. (2000). Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. International Journal of Cancer, 90, 186–198.

    Google Scholar 

  35. Bach-Gansmo, T., Danielsson, R., Saracco, A., Wilczek, B., Bogsrud, T. V., Fangberget, A., et al. (2006). Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate 99mTc-NC100692. Journal of Nuclear Medicine, 47(9), 1434–1439.

    PubMed  CAS  Google Scholar 

  36. Cai, W., Wu, Y., Chen, K., Cao, Q., Tice, D. A., & Chen, X. (2006). In vitro and in vivo characterization of 64Cu-labeled Abegrin, a humanized monoclonal antibody against integrin αvβ3. Cancer Research, 66, 9673–9681.

    PubMed  CAS  Google Scholar 

  37. Haubner, R., Wester, H. J., Burkhart, F., Senekowitsch-Schmidtke, R., Weber, W., Goodman, S. L., et al. (2001). Glycosylated RGD-containing peptides: Tracer for tumor targeting and angiogenesis imaging with improved biokinetics. Journal of Nuclear Medicine, 42, 326–336.

    PubMed  CAS  Google Scholar 

  38. Haubner, R., Kuhnast, B., Mang, C., Weber, W. A., Kessler, H., Wester, H. J., et al. (2004). [18F]Galacto-RGD: Synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjugate Chemistry, 15, 61–69.

    PubMed  CAS  Google Scholar 

  39. Felding-Habermann, B., Mueller, B. M., Romerdahl, C. A., & Cheresh, D. A. (1992). Involvement of integrin av gene expression in human melanoma tumorigenicity. Journal of Clinical Investigation, 89, 2018–2022.

    PubMed  CAS  Google Scholar 

  40. Haubner, R., Weber, W. A., Beer, A. J., Vabuliene, E., Reim, D., Sarbia, M., et al. (2005). Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Medicine, 2(3), e70.

    PubMed  Google Scholar 

  41. Myoken, Y., Kayada, Y., Okamoto, T., Kan, M., Sato, G. H., & Sato, J. D. (1991). Vascular endothelial cell growth factor (VEGF) produced by A-431 human epidermoid carcinoma cells and identification of VEGF membrane binding sites. Proceedings of the National Academy of Sciences of the United States of America, 88, 5818–5823.

    Google Scholar 

  42. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J., & Hanahan, D. (1999). Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science, 284, 808–812.

    PubMed  CAS  Google Scholar 

  43. Pichler, B., Braumueller, H., Haubner, R., Sakrauski, A. K., Kneilling, M., Senekowitsch-Schmidtke, R., et al. (2002). Monitoring of cellular immunotherapy in RIP1-Tag2 transgenic mice with radiolabelled RGD-peptides. Journal of Nuclear Medicine, 43, 122, (abstract).

    Google Scholar 

  44. Boturyn, D., Coll, J. L., Garanger, E., Favrot, M. C., & Dumy, P. (2004). Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. Journal of the American Chemical Society, 126, 5730–5739.

    PubMed  CAS  Google Scholar 

  45. Goel, A., Baranowska-Kortylewicz, J., Hinrichs, S. H., Wisecarver, J., Pavlinkova, G., Augustine, S., et al. (2001). 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: Novel imaging agents for rapid in vivo localization of human colon carcinoma. Journal of Nuclear Medicine, 42, 1519–1527.

    PubMed  CAS  Google Scholar 

  46. Chen, X., Tohme, M., Park, R., Hou, Y., Bading, J. R., & Conti, P. S. (2004). Micro-PET imaging of αvβ3-integrin expression with 18F-labeled dimeric RGD peptide. Molecular Imaging, 3, 96–104.

    PubMed  CAS  Google Scholar 

  47. Zhang, X., Xiong, Z., Wu, X., et al. (2006). Quantitative PET imaging of tumor integrin αvβ3 expression with 18F-FRGD2. Journal of Nuclear Medicine, 47, 113–121.

    PubMed  CAS  Google Scholar 

  48. Chen, X., Park, R., Tohme, M., Shahinian, A. H., Bading, J. R., & Conti, P. S. (2004). MicroPET and autoradiographic imaging of breast cancer av-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjugate Chemistry, 15, 41–49.

    PubMed  Google Scholar 

  49. Chen, X., Hou, Y., Tohme, M., et al. (2004). PEGylated Arg–Gly–Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. Journal of Nuclear Medicine, 45, 1776–1783.

    PubMed  CAS  Google Scholar 

  50. Chen, X., Liu, S., Hou, Y., et al. (2004). MicroPET imaging of breast cancer av-integrin expression with 64Cu-labeled dimeric RGD peptides. Molecular Imaging and Biology, 6, 350–359.

    PubMed  Google Scholar 

  51. Wu, Y., Zhang, X., Xiong, Z., et al. (2005). MicroPET imaging of glioma av-integrin expression using 64Cu-labeled tetrameric RGD peptide. Journal of Nuclear Medicine, 46, 1707–1718.

    PubMed  CAS  Google Scholar 

  52. Thumshirn, G., Hersel, U., Goodman, S. L., & Kessler, H. (2003). Multimeric cyclic RGD peptides as potential tools for tumor targeting: Solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry, 9, 2717–2725.

    PubMed  CAS  Google Scholar 

  53. Poethko, T., Schottelius, M., Thumshirn, G., Hersel, U., Herz, M., Henriksen, G., et al. (2004). Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. Journal of Nuclear Medicine, 45, 892–902.

    PubMed  CAS  Google Scholar 

  54. Poethko, T., Schottelius, M., Thumshirn, G., Herz, M., Haubner, R., Henriksen, G., et al. (2004). Chemoselective pre-conjugate radiohalogenation of unprotected mono- and multimeric peptides via oxime formation. Radiochimica Acta, 92, 317–327.

    CAS  Google Scholar 

  55. Montet, X., Montet-Abou, K., Reynolds, F., et al. (2006). Nanoparticle imaging of integrins on tumor cells. Neoplasia, 8(3), 214–222.

    PubMed  CAS  Google Scholar 

  56. Hu, G., Lijowski, M., Zhang, H., et al. (2007). Imaging of Vx-2 rabbit tumors with αvβ3- integrin-targeted 111In nanoparticles. International Journal of Cancer, 120, 1951–1957.

    CAS  Google Scholar 

  57. Balasubramanian, K., & Burghard, M. (2005). Chemically functionalized carbon nanotubes. Small, 1, 180–192.

    PubMed  CAS  Google Scholar 

  58. Lacerda, L., Bianco, A., Prato, M., & Kostarelos, K. (2006). Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Advanced Drug Delivery Reviews, 58, 1460–1470.

    PubMed  CAS  Google Scholar 

  59. Liu, Z., Cai, W., He, L., et al. (2007). In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2, 47–52.

    PubMed  CAS  Google Scholar 

  60. Singh, R., Pantarotto, D., Lacerda, L., et al. (2006). Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America, 103, 3357–3362.

    PubMed  CAS  Google Scholar 

  61. McDevitt, M. R., Chattopadhyay, D., Kappel, B. J., et al. (2007). Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. Journal of Nuclear Medicine, 48, 1180–1189.

    PubMed  CAS  Google Scholar 

  62. Caliceti, P., & Veronese, F. M. (2003). Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Advanced Drug Delivery Reviews, 55, 1261–1277.

    PubMed  CAS  Google Scholar 

  63. Wu, A. M., & Senter, P. D. (2005). Arming antibodies: Prospects and challenges for immunoconjugates. Nature Biotechnology, 23, 1137–1146.

    PubMed  CAS  Google Scholar 

  64. Introcaso, C. E., Hivnor, C., Cowper, S., & Werth, V. P. (2007). Nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis: A case series of nine patients and review of the literature. International Journal of Dermatology, 46(5), 447–452.

    PubMed  Google Scholar 

  65. Miller, J. C., Pien, H. H., Sahani, D., et al. (2005). Imaging angiogenesis: Applications and potential for drug development. Journal of the National Cancer Institute, 97(3), 172–187.

    Article  PubMed  CAS  Google Scholar 

  66. Spuentrup, E., & Botnar, R. M. (2006). Coronary magnetic resonance imaging: Visualization of vessel lumen and the vessel wall and molecular imaging of arteriotrombosis. European Radiology, 16, 1–14.

    PubMed  Google Scholar 

  67. Jaffer, F. A., & Weissleder, R. (2004). Seeing within: Molecular imaging of the cardiovascular system. Circulation Research, 94, 433–445.

    PubMed  CAS  Google Scholar 

  68. Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., & Li, K. C. (1998). Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nature Medicine, 4, 623–626.

    PubMed  CAS  Google Scholar 

  69. Winter, P. M., Caruthers, S. D., Kassner, A., et al. (2003). Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Research, 63, 5838–5843.

    PubMed  CAS  Google Scholar 

  70. Schmieder, A. H., Winter, P. M., Caruthers, S. D., et al. (2005). Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magnetic Resonance in Medicine, 53, 621–627.

    PubMed  CAS  Google Scholar 

  71. Thorek, D. L., Chen, A. K., Czupryna, J., & Tsourkas, A. (2006). Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Annals of Biomedical Engineering, 34, 23–38.

    PubMed  Google Scholar 

  72. Zhang, C., Jugold, M., Woenne, E. C., et al. (2007). Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Research, 67, 1555–1562.

    PubMed  CAS  Google Scholar 

  73. Daldrup-Link, H. E., Simon, G. H., & Brasch, R. C. (2006). Imaging of tumor angiogenesis: Current approaches and future prospects. Current Pharmaceutical Design, 12, 2661–2672.

    PubMed  CAS  Google Scholar 

  74. McDonald, D. M., & Choyke, P. L. (2003). Imaging of angiogenesis: From microscope to clinic. Nature Medicine, 9(6), 713–725.

    PubMed  CAS  Google Scholar 

  75. Bloch, S. H., Dayton, P. A., & Ferrara, K. W. (2004). Targeted imaging using ultrasound contrast agents. Progress and opportunities for clinical and research applications. IEEE Engineering in Medicine and Biology Magazine, 23, 18–29.

    PubMed  Google Scholar 

  76. Kaufmann, B. A., & Lindner, J. R. (2007). Molecular imaging with targeted contrast ultrasound. Current Opinion in Biotechnology, 18, 11–16.

    PubMed  CAS  Google Scholar 

  77. Ellegala, D. B., Leong-Poi, H., Carpenter, J. E., et al. (2003). Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation, 108, 336–341.

    PubMed  Google Scholar 

  78. Kumar, C. C., Nie, H., Rogers, C. P., et al. (1997). Biochemical characterization of the binding of echistatin to integrin αvβ3 receptor. Journal of Pharmacology and Experimental Therapeutics, 283, 843–853.

    PubMed  CAS  Google Scholar 

  79. Hughes, M. S., Marsh, J. N., Zhang, H., et al. (2006). Characterization of digital waveforms using thermodynamic analogs: Detection of contrast-targeted tissue in vivo. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 53, 1609–1616.

    PubMed  Google Scholar 

  80. Marsh, J. N., Partlow, K. C., Abendschein, D. R., Scott, M. J., Lanza, G. M., & Wickline, S. A. (2007). Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound in Medicine & Biology, 33(6), 950–958.

    Google Scholar 

  81. Ntziachristos, V., Yodh, A., Schnall, M., et al. (2000). Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proceedings of the National Academy of Sciences of the United States of America, 97, 2767–2772.

    PubMed  CAS  Google Scholar 

  82. Cuccia, D. J., Bevilacqua, F., Durkin, A. J., et al. (2003). In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration. Applied Optics, 42, 2940–2950.

    PubMed  Google Scholar 

  83. Bremer, C., Bredow, S., Mahmood, U., et al. (2001). Optical imaging of matrix metalloproteinase-2 activity in tumors: Feasibility study in a mouse model. Radiology, 221, 523–529.

    PubMed  CAS  Google Scholar 

  84. Chen, X., Conti, P. S., & Moats, R. A. (2004). In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Research, 64(21), 8009–8014.

    PubMed  CAS  Google Scholar 

  85. Jin, Z. H., Josserand, V., Foillard, S., Boturyn, D., Dumy, P., Favrot, M. C., et al. (2007). In vivo optical imaging of integrin alphaV-beta3 in mice using multivalent or monovalent cRGD targeting vectors. Molecular Cancer, 6, 41.

    PubMed  Google Scholar 

  86. von Wallbrunn, A., Holtke, C., Zuhlsdorf, M., Heindel, W., Schafers, M., & Bremer, C. (2007). In vivo imaging of integrin alpha v beta 3 expression using fluorescence-mediated tomography. European Journal of Nuclear Medicine and Molecular Imaging, 34(5), 745–754, Epub 2006 Nov 28.

    Google Scholar 

  87. Cai, W., Hsu, A. R., Li, Z. B., & Chen, X. (2007). Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Research Letters, 2, 265–281.

    CAS  Google Scholar 

  88. Michalet, X., Pinaud, F. F., Bentolila, L. A., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.

    PubMed  CAS  Google Scholar 

  89. Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.

    PubMed  CAS  Google Scholar 

  90. Cai, W., Shin, D. W., Chen, K., et al. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 6, 669–676.

    PubMed  CAS  Google Scholar 

  91. Levenson, R. M. (2004). Spectral imaging and pathology: Seeing more. Laboratory Medicine, 35, 244–251.

    Google Scholar 

  92. Mansfield, J. R., Gossage, K. W., Hoyt, C. C., & Levenson, R. M. (2005). Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. Journal of Biomedical Optics, 10, 41207.

    PubMed  Google Scholar 

  93. Zimmer, J. P., Kim, S. W., Ohnishi, S., Tanaka, E., Frangioni, J. V., & Bawendi, M. G. (2006). Size series of small indium arsenide-zinc selenide core-shell nanocrystals and application to in vivo imaging. Journal of the American Chemical Society, 128, 2526–2527.

    PubMed  CAS  Google Scholar 

  94. Pradhan, N., Battaglia, D. M., Liu, Y., & Peng, X. (2007). Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Letters, 7, 312–317.

    PubMed  CAS  Google Scholar 

  95. Mulder, W. J., Koole, R., Brandwijk, R. J., et al. (2006). Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Letters, 6, 1–6.

    PubMed  CAS  Google Scholar 

  96. Beer, A. J., Haubner, R., Goebel, M., et al. (2005). Biodistribution and pharmacokinetics of the αvβ3 selective tracer 18F Galacto-RGD in cancer patients. Journal of Nuclear Medicine, 46, 1333–1341.

    PubMed  CAS  Google Scholar 

  97. Beer, A. J., Haubner, R., Wolf, I., et al. (2006). PET-based human dosimetry of 18F-galacto-RGD, a new radiotracer for imaging alpha v beta3 expression. Journal of Nuclear Medicine, 47, 763–769.

    PubMed  CAS  Google Scholar 

  98. Stangier, I., Wester, H. J., Schwaiger, M., & Beer, A. J. (2007). Comparison of standardised uptake values and distribution volume for imaging of avz3 expression in breast cancer patients with [18F]Galacto-RGD PET. Journal of Nuclear Medicine, 48(S2), 406, (abstract).

    Google Scholar 

  99. Beer, A. J., Haubner, R., Sarbia, M., Goebel, M., Luderschmidt, S., Grosu, A. L., et al. (2006). Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clinical Cancer Research, 12(13), 3942–3949.

    PubMed  CAS  Google Scholar 

  100. Beer, A. J., Grosu, A. L., Carlsen, J., Kolk, A., Sarbia, M., Stangier, I., et al. (2007). [18F]Galacto-RGD PET for imaging of αvβ3 expression on neovasculature in patients with squamous cell carcinoma of the head and neck. Clinical Cancer Research, 13, 6610–6616.

    PubMed  CAS  Google Scholar 

  101. Beer, A. J., Lorenzen, S., Metz, S., Wester, H. J., & Schwaiger, M. (2007). Integrin avz3 expression and glucose metabolism do not correlate in primary and metastatic lesions in cancer patients: A PET study using [18F]Galacto-RGD and [18F]FDG. Journal of Nuclear Medicine, 48(S2), 30, (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambros J. Beer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, A.J., Schwaiger, M. Imaging of integrin αvβ3 expression. Cancer Metastasis Rev 27, 631–644 (2008). https://doi.org/10.1007/s10555-008-9158-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9158-3

Keywords

Navigation