Skip to main content

Advertisement

Log in

Challenges and pitfalls in classification of disproportionate mitral regurgitation

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The concept of disproportionate mitral regurgitation (dispropMR) has been introduced to identify patients with functional mitral regurgitation (MR) who benefit from percutaneous treatment. We aimed to examine echocardiographic characteristics behind this entity. We retrospectively included 172 consecutive patients with reduced left ventricular ejection fraction (LVEF), and more than mild MR referred to clinically indicated echocardiography. According to the proportionality ratio (effective regurgitant orifice area (EROA)/left ventricular end-diastolic volume (LVEDV)) patients were divided into dispropMR and proportionate MR (propMR) group. Potential factors which might affect proportionality definition were analyzed. 55 patients (32%) had dispropMR. Discrepant grading of MR severity was observed when using regurgitant volume (RegVol) by proximal isovelocity surface area (PISA) method or volumetric method, with significant discordance only in dispropMR (p < 0.001). Patients with dispropMR had more frequently left ventricular foreshortened images for LVEDV calculation than patients with propMR (p = 0.003), resulting in smaller LVEDV in dispropMR group. DispropMR group had more substantial dynamic variation of regurgitant flow compared to propMR. Accordingly, EROA was consistently overestimated by standard single-point PISA method compared to serial PISA method. This was more pronounced in dispropMR (bias:10.5 ± 28.3 mm2) compared to propMR group (bias:6.4 ± 12.8 mm2). DispropMR may be found in roughly one third of clinically indicated echocardiographic studies in patients with reduced LVEF and more than mild MR. EROA overestimation due to dynamic variation of regurgitant flow and LVEDV underestimation due to LV foreshortening were more frequently found in dispropMR. Our results indicate that methodological limitations of echocardiographic MR grading could not be neglected in classifying the proportionality of MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Vahanian A, Beyersdorf F, Praz F et al (2022) 2021 ESC/EACTS guidelines for the management of valvular Heart Disease. Eur Heart J 43:561–632. https://doi.org/10.1093/eurheartj/ehab395

    Article  PubMed  Google Scholar 

  2. Feldman T, Kar S, Elmariah S et al (2015) Randomized comparison of Percutaneous repair and Surgery for mitral regurgitation. J Am Coll Cardiol 66:2844–2854. https://doi.org/10.1016/j.jacc.2015.10.018

    Article  PubMed  Google Scholar 

  3. Obadia J-F, Messika-Zeitoun D, Leurent G et al (2018) Percutaneous Repair or Medical Treatment for secondary mitral regurgitation. N Engl J Med 379:2297–2306. https://doi.org/10.1056/NEJMoa1805374

    Article  PubMed  Google Scholar 

  4. Stone GW, Lindenfeld J, Abraham WT et al (2018) Transcatheter mitral-valve repair in patients with Heart Failure. N Engl J Med 379:2307–2318. https://doi.org/10.1056/NEJMoa1806640

    Article  PubMed  Google Scholar 

  5. Senni M, Adamo M, Metra M et al (2019) Treatment of functional mitral regurgitation in chronic Heart Failure: can we get a ‘proof of concept’ from the MITRA-FR and COAPT trials? Eur J Heart Fail 21:852–861. https://doi.org/10.1002/ejhf.1491

    Article  PubMed  Google Scholar 

  6. Pibarot P, Delgado V, Bax JJ (2019) MITRA-FR vs. COAPT: lessons from two trials with diametrically opposed results. Eur Hear Journal Cardiovasc Imaging 20:620–624. https://doi.org/10.1093/ehjci/jez073

    Article  Google Scholar 

  7. Hagendorff A, Knebel F, Helfen A et al (2021) Disproportionate mitral regurgitation: another myth? A critical appraisal of echocardiographic assessment of functional mitral regurgitation. Int J Cardiovasc Imaging 37:183–196. https://doi.org/10.1007/s10554-020-01975-6

    Article  PubMed  Google Scholar 

  8. Grayburn PA, Sannino A, Packer M (2019) Proportionate and disproportionate functional mitral regurgitation: a new conceptual Framework that reconciles the results of the MITRA-FR and COAPT trials. JACC Cardiovasc Imaging 12:353–362. https://doi.org/10.1016/j.jcmg.2018.11.006

    Article  PubMed  Google Scholar 

  9. Packer M, Grayburn PA (2020) New evidence supporting a novel conceptual Framework for distinguishing proportionate and disproportionate functional mitral regurgitation. JAMA Cardiol 5:469–475. https://doi.org/10.1001/jamacardio.2019.5971

    Article  PubMed  Google Scholar 

  10. Ooms JF, Bouwmeester S, Debonnaire P et al (2022) Transcatheter edge-to-Edge Repair in Proportionate Versus Disproportionate Functional Mitral Regurgitation. J Am Soc Echocardiogr 35:105–115e8. https://doi.org/10.1016/j.echo.2021.08.002

    Article  PubMed  Google Scholar 

  11. Lindenfeld J, Abraham WT, Grayburn PA et al (2021) Association of Effective Regurgitation Orifice Area to Left Ventricular End-Diastolic volume ratio with transcatheter mitral valve repair outcomes: a secondary analysis of the COAPT Trial. JAMA Cardiol 6:427–436. https://doi.org/10.1001/jamacardio.2020.7200

    Article  PubMed  Google Scholar 

  12. Messika-Zeitoun D, Iung B, Armoiry X et al (2021) Impact of mitral regurgitation severity and left ventricular remodeling on Outcome after MitraClip Implantation: results from the Mitra-FR Trial. JACC Cardiovasc Imaging 14:742–752. https://doi.org/10.1016/j.jcmg.2020.07.021

    Article  PubMed  Google Scholar 

  13. Adamo M, Cani DS, Gavazzoni M et al (2020) Impact of disproportionate secondary mitral regurgitation in patients undergoing edge-to-edge percutaneous mitral valve repair. EuroIntervention 16:413–420. https://doi.org/10.4244/EIJ-D-19-01114

    Article  PubMed  Google Scholar 

  14. Zoghbi WA, Adams D, Bonow RO et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30:303–371. https://doi.org/10.1016/j.echo.2017.01.007

    Article  PubMed  Google Scholar 

  15. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for Cardiac Chamber quantification by Echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39e14. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  16. Lancellotti P, Pibarot P, Chambers J et al (2022) Multi-modality imaging assessment of native valvular regurgitation: an EACVI and ESC council of valvular Heart Disease position paper. Eur Hear J - Cardiovasc Imaging 23:e171–e232. https://doi.org/10.1093/ehjci/jeab253

    Article  Google Scholar 

  17. Buck T, Plicht B, Kahlert P et al (2008) Effect of dynamic Flow Rate and Orifice Area on Mitral Regurgitant Stroke volume quantification using the Proximal Isovelocity Surface Area Method. J Am Coll Cardiol 52:767–778. https://doi.org/10.1016/j.jacc.2008.05.028

    Article  PubMed  Google Scholar 

  18. Qin T, Caballero A, Hahn RT et al (2021) Computational analysis of virtual echocardiographic Assessment of Functional Mitral Regurgitation for Validation of Proximal Isovelocity Surface Area methods. J Am Soc Echocardiogr 34:1211–1223. https://doi.org/10.1016/j.echo.2021.06.011

    Article  PubMed  Google Scholar 

  19. Pavlou M, Ambler G, Seaman SR et al (2015) How to develop a more accurate risk prediction model when there are few events. BMJ 351:h3868. https://doi.org/10.1136/bmj.h3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartko PE, Heitzinger G, Arfsten H et al (2019) Disproportionate functional mitral regurgitation: advancing a conceptual Framework to Clinical Practice. JACC Cardiovasc Imaging 12:2088–2090. https://doi.org/10.1016/j.jcmg.2019.05.005

    Article  PubMed  Google Scholar 

  21. Lopes PM, Albuquerque F, Freitas P et al (2022) Assessing proportionate and disproportionate functional mitral regurgitation with individualized thresholds. Eur Hear Journal Cardiovasc Imaging 23:431–440. https://doi.org/10.1093/ehjci/jeab023

    Article  Google Scholar 

  22. Gorlin R, Dexter L (1952) Hydraulic formula for the calculation of the cross-sectional area of the mitral valve during regurgitation. Am Heart J 43:188–205. https://doi.org/10.1016/0002-8703(52)90210-X

    Article  CAS  PubMed  Google Scholar 

  23. Grayburn PA, Sannino A, Packer M (2021) Distinguishing proportionate and disproportionate subtypes in functional mitral regurgitation and left ventricular systolic dysfunction. JACC Cardiovasc Imaging 14:726–729. https://doi.org/10.1016/j.jcmg.2020.05.043

    Article  PubMed  Google Scholar 

  24. Gaasch WH, Meyer TE (2018) Secondary mitral regurgitation (part 1): volumetric quantification and analysis. Heart 104:634–638. https://doi.org/10.1136/heartjnl-2017-312001

    Article  PubMed  Google Scholar 

  25. Asch FM, Grayburn PA, Siegel RJ et al (2019) Transcatheter mitral valve replacement in patients with Heart Failure and secondary mitral regurgitation: from COAPT Trial. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2019.09.017

    Article  PubMed  Google Scholar 

  26. Uretsky S, Aldaia L, Marcoff L et al (2020) Concordance and discordance of echocardiographic parameters recommended for assessing the severity of mitral regurgitation. Circ Cardiovasc Imaging 13:1–10. https://doi.org/10.1161/CIRCIMAGING.119.010278

    Article  Google Scholar 

  27. Igata S, Cotter BR, Hang CT et al (2021) Optimal quantification of functional mitral regurgitation: comparison of volumetric and proximal isovelocity surface area methods to predict outcome. J Am Heart Assoc 10:1–9. https://doi.org/10.1161/JAHA.120.018553

    Article  Google Scholar 

  28. Altes A, Levy F, Iacuzio L et al (2022) Comparison of mitral regurgitant volume Assessment between Proximal Flow Convergence and Volumetric methods in patients with significant primary mitral regurgitation: an echocardiographic and cardiac magnetic resonance imaging study. J Am Soc Echocardiogr 35:671–681. https://doi.org/10.1016/j.echo.2022.03.005

    Article  PubMed  Google Scholar 

  29. Hagendorff A, Knebel F, Helfen A et al (2021) Echocardiographic assessment of mitral regurgitation: discussion of practical and methodologic aspects of severity quantification to improve diagnostic conclusiveness. Clin Res Cardiol 110:1704–1733. https://doi.org/10.1007/s00392-021-01841-y

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ünlü S, Duchenne J, Mirea O et al (2020) Impact of apical foreshortening on deformation measurements: a report from the EACVI-ASE strain standardization Task Force. Eur Hear Journal Cardiovasc Imaging 21:337–343. https://doi.org/10.1093/ehjci/jez189

    Article  Google Scholar 

  31. Schwammenthal E, Chen C, Benning F et al (1994) Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: clinical data and experimental testing. Circulation 90:307–322. https://doi.org/10.1161/01.CIR.90.1.307

    Article  CAS  PubMed  Google Scholar 

  32. Enriquez-Sarano M, Sinak LJ, Tajik AJ et al (1995) Changes in effective regurgitant orifice throughout systole in patients with mitral valve prolapse. Circulation 92:2951–2958. https://doi.org/10.1161/01.CIR.92.10.2951

    Article  CAS  PubMed  Google Scholar 

  33. Gaasch WH, Aurigemma GP, Meyer TE (2020) An Appraisal of the Association of Clinical Outcomes with the severity of regurgitant volume relative to end-diastolic volume in patients with secondary mitral regurgitation. JAMA Cardiol 5:476–481. https://doi.org/10.1001/jamacardio.2019.5980

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the University Medical Centre Ljubljana, Slovenia [grant number 20200232].

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of manuscript study, or both (J.A., and M.C.); Analysis and interpretation of data, or both (J.A., M.R., B.B., N.S., J.T., M.B., M.C.); Manuscript drafting or critical revision for important intellectual content (J.A., M.R., B.B., N.S., J.T., M.B., M.C.); Final approval of the manuscript submitted (J.A., M.R., B.B., N.S., J.T., M.B., M.C.).

Corresponding author

Correspondence to Marta Cvijić.

Ethics declarations

Ethical approval

This research study was conducted retrospectively from data obtained for clinical purposes. The study protocol was approved by the National Medical Ethics Committee.

Consent to participate

This is an observational retrospective study. The Slovenian Research Ethics Committee has confirmed that no informed consent is required.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrožič, J., Rauber, M., Berlot, B. et al. Challenges and pitfalls in classification of disproportionate mitral regurgitation. Int J Cardiovasc Imaging 40, 757–767 (2024). https://doi.org/10.1007/s10554-023-03043-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-03043-1

Keywords

Navigation