Skip to main content
Log in

Diagnostic comparison of automatic and manual TIMI frame-counting-generated quantitative flow ratio (QFR) values

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Quantitative flow ratio (QFR) is a computational measurement of FFR (fractional flow reserve), calculated from coronary angiography. Latest QFR software automates TIMI frame counting (TFC), which occurs during the flow step of QFR analyses, making the analysis faster and more reproducible. The objective is to determine the diagnostic performance of QFR values obtained from analyses using automatic TFC compared to those obtained from analyses using manual TFC. This was a single-arm clinical trial that used the prospective analysis of the coronary angiographic image series of 97 patients who underwent evaluation of stable coronary artery disease with FFR/iFR at MedStar Washington Hospital Center in Washington, DC, USA. Automatic and manual TFC QFR values were obtained from the analyses of each of the 97 patients’ image series, with manual TFC QFR values as the current gold standard for comparison. The diagnostic performance of automatic TFC QFR values was measured as follows: sensitivity was 0.87 (95% CI 0.66–0.97) and specificity was 1.00 (95% CI 0.9514–1.00), positive predictive value (PPV) was 1.00 (95%CI 1.00–1.00), while the NPV was 0.96 (95% CI 0.96–0.99). Overall accuracy was 96.91% (95% CI 91.23%–99.36%). The agreement as illustrated by the Bland–Altman plot shows a bias of 0.0023 (SD 0.0208) and narrow limits of agreement (LOA): Upper LOA 0.0573 and Lower LOA − 0.0528. The area under curve (AUC) was 0.996. QFR values generated from automatic TFC are comparable to those generated from manual TFC in diagnostic capability. The most recent software update produces values equivalent to those of the previous manual option, and can therefore be used interchangeably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moscarella E, Gragnano F, Cesaro A, Ielasi A, Diana V, Conte M, Schiavo A, Coletta S, Di Maio D, Fimiani F, Calabrò P (2021) Coronary physiology assessment for the diagnosis and treatment of coronary artery disease. Cardiol Clin 38:575–588. https://doi.org/10.1016/j.ccl.2020.07.003

    Article  Google Scholar 

  2. Nogic J, Prosser H, O’Brien J, Thakur U, Soon K, Proimos G, Brown AJ (2020) The assessment of intermediate coronary lesions using intracoronary imaging. Cardiovasc Diagn Ther. https://doi.org/10.21037/cdt-20-226

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang D, Lv S, Song X, Yuan F, Xu F, Zhang M, Yan S, Cao X (2015) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention: a meta-analysis. Heart 101:455–462. https://doi.org/10.1136/heartjnl-2014-306578

    Article  PubMed  Google Scholar 

  4. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM, Bittl JA, Cohen MG, DiMaio JM, Don CW, Fremes SE, Gaudino MF, Goldberger ZD, Grant MC, Jaswal JB, Kurlansky PA, Mehran R, Metkus TS Jr, Nnacheta LC, Rao SV, Sellke FW, Sharma G, Yong CM, Zwischenberger BA (2021) ACC/AHA/SCAI guideline for coronary artery revascularization. J Am Coll Cardiol 79:21–129. https://doi.org/10.1016/j.jacc.2021.09.006

    Article  Google Scholar 

  5. Çimen S, Gooya A, Grass M, Frangi AF (2016) Reconstruction of coronary arteries from X-ray angiography: a review. Med Image Anal 32:46–68. https://doi.org/10.1016/j.media.2016.02.007

    Article  PubMed  Google Scholar 

  6. Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JHC (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count. JACC Cardiovasc Interv 7:768–777. https://doi.org/10.1016/j.jcin.2014.03.004

    Article  PubMed  Google Scholar 

  7. Xu B, Tu S, Qiao S, Qu X, Chen Y, Yang J, Guo L, Sun Z, Li Z, Tian F, Fang W, Chen J, Li W, Guan C, Holm NR, Wijns W, Hu S (2017) Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J Am Coll Cardiol 70:3077–3087. https://doi.org/10.1016/j.jacc.2017.10.035

    Article  PubMed  Google Scholar 

  8. Cerrato E, Mejía-Rentería H, Franzè A, Quadri G, Belliggiano D, Biscaglia S, Lo Savio L, Spataro F, Erriquez A, Giacobbe F, Vergara-Uzcategui C, di Girolamo D, Tebaldi M, Varbella F, Campo G, Escaned J (2021) Quantitative flow ratio as a new tool for angiography-based physiological evaluation of coronary artery disease: a review. Future Cardiol 17:1435–1452. https://doi.org/10.2217/fca-2020-0199

    Article  CAS  PubMed  Google Scholar 

  9. Westra J, Tu S, Campo G, Qiao S, Matsuo H, Qu X, Koltowski L, Chang Y, Liu T, Yang J, Andersen BK, Eftekhari A, Christiansen EH, Escaned J, Wijns W, Xu B, Holm NR (2019) Diagnostic performance of quantitative flow ratio in prospectively enrolled patients: an individual patient-data meta-analysis. Catheter Cardiovasc Interv 94:693–701. https://doi.org/10.1002/ccd.28283

    Article  PubMed  Google Scholar 

  10. Finizio M, Melaku GD, Kahsay Y, Beyene S, Kuku KO, Ben-Dor I, Hashim H, Waksman R, Garcia-Garcia HM (2021) Comparison of quantitative flow ratio and invasive physiology indices in a diverse population at a tertiary United states hospital. Cardiovasc Revasc Med 32:1–4. https://doi.org/10.1016/j.carrev.2021.06.115

    Article  PubMed  Google Scholar 

  11. Xing Z, Pei J, Huang J, Hu X, Gao S (2019) Diagnostic performance of QFR for the evaluation of intermediate coronary artery stenosis confirmed by fractional flow reserve. Braz J Cardiovasc Surg. https://doi.org/10.21470/1678-9741-2018-0234

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu B, Tu S, Song L, Jin Z, Yu B, Fu G, Zhou Y, Wang J, Chen Y, Pu J, Chen L, Qu X, Yang J, Liu X, Guo L, Shen C, Zhang Y, Zhang Q, Pan H, Fu X, Liu J, Zhao Y, Escaned J, Wang Y, Fearon WF, Dou K, Kirtane A, Wu Y, Serruys PW, Yang W, Wijns W, Guan C, Leon MB, Qiao S, Stone GW (2021) Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. The Lancet 398:2149–2159. https://doi.org/10.1016/S0140-6736(21)02248-0

    Article  Google Scholar 

  13. Zuo W, Yang M, Chen Y, Xie A, Chen L, Ma G (2019) Meta-analysis of diagnostic performance of instantaneous wave-free ratio versus quantitative flow ratio for detecting the functional significance of coronary stenosis. BioMed Res Int. https://doi.org/10.1155/2019/5828931

    Article  PubMed  PubMed Central  Google Scholar 

  14. Westra J, Tu S, Winther S, Nissen L, Vestergaard M-B, Andersen BK, Holck EN, Maule CF, Johansen JK, Andreasen LN, Simonsen JK, Zhang Y, Kristensen SD, Maeng M, Kaltoft A, Terkelsen CJ, Krusell LR, Jakobsen L, Reiber JHC, Lassen JF, Böttcher M, Bøtker HE, Christiansen EH, Holm NR (2018) Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (wire-free functional imaging II). Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.117.007107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cortés C, Carrasco-Moraleja M, Aparisi A, Rodriguez-Gabella T, Campo A, Gutiérrez H, Julca F, Gómez I, San Román JA, Amat-Santos IJ (2020) Quantitative flow ratio-meta-analysis and systematic review. Catheter Cardiovasc Interv 97:807–814. https://doi.org/10.1002/ccd.28857

    Article  PubMed  Google Scholar 

  16. Edep ME, Guarneri EM, Teirstein PS, Phillips PS, Brown DL (1999) Differences in TIMI frame count following successful reperfusion with stenting or percutaneous transluminal coronary angioplasty for acute myocardial infarction. Am J Cardiol 83:1326–1329. https://doi.org/10.1016/S0002-9149(99)00094-6

    Article  CAS  PubMed  Google Scholar 

  17. Gibson CM, Cannon CP, WiL D, Dodge JT Jr, Alexander B, Marble SJ, McCabe CH, Raymond L, Fortin T, Poole WK, Braunwald E (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93:879–888. https://doi.org/10.1161/01.cir.93.5.879

    Article  CAS  PubMed  Google Scholar 

  18. Kunadian V, Harrigan C, Zorkun C, Palmer AM, Ogando KJ, Biller LH, Lord EE, Williams SP, Lew ME, Ciaglo LN, Buros JL, Marble SJ, Gibson WJ, Gibson CM (2008) Use of the TIMI frame count in the assessment of coronary artery blood flow and microvascular function over the past 15 years. J Thromb Thrombolysis 27:316. https://doi.org/10.1007/s11239-008-0220-3

    Article  PubMed  Google Scholar 

  19. Manginas A, Gatzov P, Chasikidis C, Voudris V, Pavlides G, Cokkinos D (1999) Estimation of coronary flow reserve using the thrombolysis in myocardial infarction (TIMI) frame count method. Am J Cardiol 83:1562–1565. https://doi.org/10.1016/s0002-9149(99)00149-6

    Article  CAS  PubMed  Google Scholar 

  20. Faile BA, Guzzo JA, Tate DA, Nichols TC, Smith SC, Dehmer GJ (2000) Effect of sex, hemodynamics, body size, and other clinical variables on the corrected thrombolysis in myocardial infarction frame count used as an assessment of coronary blood flow. Am Heart J 140:308–314. https://doi.org/10.1067/mhj.2000.108003

    Article  CAS  PubMed  Google Scholar 

  21. Abaci A, Oguzhan A, Eryol NK, Ergin A (1999) Effect of potential confounding factors on the thrombolysis in myocardial infarction (TIMI) trial frame count and its reproducibility. Circulation 100:2219–2223. https://doi.org/10.1161/01.cir.100.22.2219

    Article  CAS  PubMed  Google Scholar 

  22. French J, Ellis C, Williams B, Amos D, Ramanathan K, Whitlock R, White H (1998) Abnormal coronary flow in infarct arteries 1 year after myocardial infarction is predicted at 4 weeks by corrected thrombolysis in myocardial infarction (TIMI) frame count and stenosis severity. Am J Cardiol 81:665–671. https://doi.org/10.1016/s0002-9149(97)01004-7

    Article  CAS  PubMed  Google Scholar 

  23. Stankovic G, Manginas A, Voudris V, Pavlides G, Athanassopoulos G, Ostojic M, Cokkinos D (2000) Prediction of restenosis after coronary angioplasty by use of a new index: TIMI frame count/minimal luminal diameter ratio. Circulation 101:962–968. https://doi.org/10.1161/01.cir.101.9.962

    Article  CAS  PubMed  Google Scholar 

  24. Appleby MA, Michaels AD, Chen M, Gibson CM (2000) Importance of the TIMI frame count: implications for future trials. Curr Control Trials Cardiovasc Med 1:31–34. https://doi.org/10.1186/cvm-1-1-031

    Article  PubMed  PubMed Central  Google Scholar 

  25. ten Brinke GA, Slump CH, Stoel MG (2012) Automated TIMI frame counting using 3-d modeling. Comput Med Imaging Graph 36:580–588. https://doi.org/10.1016/j.compmedimag.2012.07.001

    Article  PubMed  Google Scholar 

  26. Westra J, Sejr-Hansen M, Koltowski L, Mejía-Rentería H, Tu S, Kochman J, Zhang Y, Liu T, Campo G, Hjort J, Mogensen LJH, Erriquez A, Andersen BK, Eftekhari A, Escaned J, Christiansen EH, Holm NR (2022) Reproducibility of quantitative flow ratio: the QREP study. EuroIntervention 17:1252–1259. https://doi.org/10.4244/EIJ-D-21-00425

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ron Waksman: Advisory Board: Abbott Vascular, Amgen, Boston Scientific, Cardioset, Cardiovascular Systems Inc., Medtronic, Philips, Pi-Cardia Ltd.; Consultant: Abbott Vascular, Amgen, Biotronik, Boston Scientific, Cardioset, Cardiovascular Systems Inc., Medtronic, Philips, Pi-Cardia Ltd., Transmural Systems; Grant Support: AstraZeneca, Biotronik, Boston Scientific, Chiesi; Speakers Bureau: AstraZeneca, Chiesi; Investor: MedAlliance; Transmural Systems.

Hector Garcia: Grant to Institution: Medtronic, Biotronik, Neovasc, Boston Scientific, Abbott, Shockwave, Chiesi and Phillips. Consultant to Boston Scientific and ACIST. All other authors report no relevant disclosures.

Funding

There is no funding associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design and planning, AD. conducted all QFR analyses, data collection, statistical analyses, and created the images and figures, and first draft of the manuscript. All authors contributed to the final draft of the manuscript and provided commentary and edits prior to submission. All authors have reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Hector M. Garcia-Garcia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from Institutional Review Board of Washington Hospital Center. The Washington Hospital Center Ethics Committee provided approval prior to study initiation.

Informed consent

Informed consent was obtained from all patients included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devineni, A., Levine, M.B., Melaku, G.D. et al. Diagnostic comparison of automatic and manual TIMI frame-counting-generated quantitative flow ratio (QFR) values. Int J Cardiovasc Imaging 38, 1663–1670 (2022). https://doi.org/10.1007/s10554-022-02666-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02666-0

Keywords

Navigation