Skip to main content
Log in

Tissue-based markers of right ventricular dysfunction in ischemic mitral regurgitation assessed via stress cardiac magnetic resonance and three-dimensional echocardiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Ischemic mitral regurgitation (iMR) augments risk for right ventricular dysfunction (RVDYS). Right and left ventricular (LV) function are linked via common coronary perfusion, but data is lacking regarding impact of LV ischemia and infarct transmurality—as well as altered preload and afterload—on RV performance. In this prospective multimodality imaging study, stress CMR and 3-dimensional echo (3D-echo) were performed concomitantly in patients with iMR. CMR provided a reference for RVDYS (RVEF < 50%), as well as LV function/remodeling, ischemia and infarction. Echo was used to test multiple RV performance indices, including linear (TAPSE, S′), strain (GLS), and volumetric (3D-echo) approaches. 90 iMR patients were studied; 32% had RVDYS. RVDYS patients had greater iMR, lower LVEF, larger global ischemic burden and inferior infarct size (all p < 0.05). Regarding injury pattern, RVDYS was associated with LV inferior ischemia and infarction (both p < 0.05); 80% of affected patients had substantial viable myocardium (< 50% infarct thickness) in ischemic inferior segments. Regarding RV function, CMR RVEF similarly correlated with 3D-echo and GLS (r = 0.81–0.87): GLS yielded high overall performance for CMR-evidenced RVDYS (AUC: 0.94), nearly equivalent to that of 3D-echo (AUC: 0.95). In multivariable regression, GLS was independently associated with RV volumetric dilation on CMR (OR − 0.90 [CI − 1.19 to − 0.61], p < 0.001) and 3D echo (OR − 0.43 [CI − 0.84 to − 0.02], p = 0.04). Among patients with iMR, RVDYS is associated with potentially reversible processes, including LV inferior ischemic but predominantly viable myocardium and strongly impacted by volumetric loading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASE:

American Society of Echocardiography

CAD:

Coronary artery disease

CI:

Confidence interval

CMR:

Cardiac magnetic resonance

Echo:

Echocardiography

ESV:

End-systolic volume

EDV:

End-diastolic volume

EF:

Ejection fraction

GLS:

Global longitudinal strain

iMR:

Ischemic mitral regurgitation

LV:

Left ventricle

MI:

Myocardial infarction

MR:

Mitral regurgitation

NYHA:

New York Heart Association

PA:

Pulmonary artery

PH:

Pulmonary hypertension

ROC:

Receiver operating characteristics

RV:

Right ventricle

RVDYS :

Right ventricular dysfunction

S′:

Systolic excursion velocity

SPECT:

Single-photon emission computed tomography

TAPSE:

Tricuspid annular plane systolic excursion

References

  1. Klima UP, Guerrero JL, Vlahakes GJ (1999) Myocardial perfusion and right ventricular function. Ann Thorac Cardiovasc Surg 5:74–80

    CAS  PubMed  Google Scholar 

  2. Kim J, Di Franco A, Seoane T, Srinivasan A, Kampaktsis PN, Geevarghese A et al (2016) Right ventricular dysfunction impairs effort tolerance independent of left ventricular function among patients undergoing exercise stress myocardial perfusion imaging. Circ Cardiovasc Imaging 9:e005115

    PubMed  PubMed Central  Google Scholar 

  3. Maddahi J, Berman DS, Matsuoka DT, Waxman AD, Forrester JS, Swan HJ (1980) Right ventricular ejection fraction during exercise in normal subjects and in coronary artery disease patients: assessment by multiple-gated equilibrium scintigraphy. Circulation 62:133–140

    Article  CAS  PubMed  Google Scholar 

  4. Brown KA, Okada RD, Boucher CA, Strauss HW, Pohost GM (1984) Right ventricular ejection fraction response to exercise in patients with coronary artery disease: influence of both right coronary artery disease and exercise-induced changes in right ventricular afterload. J Am Coll Cardiol 3:895–901

    Article  CAS  PubMed  Google Scholar 

  5. Sabe MA, Sabe SA, Kusunose K, Flamm SD, Griffin BP, Kwon DH (2016) Predictors and prognostic significance of right ventricular ejection fraction in patients with ischemic cardiomyopathy. Circulation 134:656–665

    Article  PubMed  Google Scholar 

  6. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC et al (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379:453–460

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gorter TM, Lexis CP, Hummel YM, Lipsic E, Nijveldt R, Willems TP et al (2016) Right ventricular function after acute myocardial infarction treated with primary percutaneous coronary intervention (from the glycometabolic intervention as adjunct to primary percutaneous coronary intervention in ST-segment elevation myocardial infarction III trial). Am J Cardiol 118:338–344

    Article  PubMed  Google Scholar 

  8. Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA et al (2007) Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol 49:855–862

    Article  PubMed  Google Scholar 

  9. Di Franco A, Kim J, Rodriguez-Diego S, Khalique O, Siden JY, Goldburg SR et al (2017) Multiplanar strain quantification for assessment of right ventricular dysfunction and non-ischemic fibrosis among patients with ischemic mitral regurgitation. PLoS ONE 12:e0185657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim J, Medicherla CB, Ma CL, Feher A, Kukar N, Geevarghese A et al (2016) Association of right ventricular pressure and volume overload with non-ischemic septal fibrosis on cardiac magnetic resonance. PLoS ONE 11:e0147349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klem I, Heitner JF, Shah DJ, Sketch MH Jr, Behar V, Weinsaft J et al (2006) Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 47:1630–1638

    Article  PubMed  Google Scholar 

  12. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  Google Scholar 

  13. Weinsaft JW, Kim J, Medicherla CB, Ma CL, Codella NC, Kukar N et al (2016) Echocardiographic algorithm for post-myocardial infarction LV thrombus: a gatekeeper for thrombus evaluation by delayed enhancement CMR. JACC Cardiovasc Imaging 9:505–515

    Article  PubMed  Google Scholar 

  14. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270

    Article  PubMed  Google Scholar 

  15. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713 (quiz 86–8)

    Article  Google Scholar 

  16. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39

    Article  Google Scholar 

  17. Srinivasan A, Kim J, Khalique O, Geevarghese A, Rusli M, Shah T et al (2017) Echocardiographic linear fractional shortening for quantification of right ventricular systolic function: a cardiac magnetic resonance validation study. Echocardiography 34:348–358

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 30:303–371

    Article  PubMed  Google Scholar 

  19. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I et al (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  CAS  PubMed  Google Scholar 

  20. Devereux RB, Roman MJ, Palmieri V, Liu JE, Lee ET, Best LG et al (2003) Prognostic implications of ejection fraction from linear echocardiographic dimensions: the Strong Heart Study. Am Heart J 146:527–534

    Article  PubMed  Google Scholar 

  21. Mauritz GJ, Vonk-Noordegraaf A, Kind T, Surie S, Kloek JJ, Bresser P et al (2012) Pulmonary endarterectomy normalizes interventricular dyssynchrony and right ventricular systolic wall stress. J Cardiovasc Magn Reson 14:5

    Article  PubMed  PubMed Central  Google Scholar 

  22. Goldstein JA, Tweddell JS, Barzilai B, Yagi Y, Jaffe AS, Cox JL (1992) Importance of left ventricular function and systolic ventricular interaction to right ventricular performance during acute right heart ischemia. J Am Coll Cardiol 19:704–711

    Article  CAS  PubMed  Google Scholar 

  23. Zornoff LA, Skali H, Pfeffer MA, St John Sutton M, Rouleau JL, Lamas GA et al (2002) Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol 39:1450–1455

    Article  PubMed  Google Scholar 

  24. Lu KJ, Chen JX, Profitis K, Kearney LG, DeSilva D, Smith G et al (2015) Right ventricular global longitudinal strain is an independent predictor of right ventricular function: a multimodality study of cardiac magnetic resonance imaging, real time three-dimensional echocardiography and speckle tracking echocardiography. Echocardiography 32:966–974

    Article  PubMed  Google Scholar 

  25. van der Zwaan HB, Geleijnse ML, McGhie JS, Boersma E, Helbing WA, Meijboom FJ et al (2011) Right ventricular quantification in clinical practice: two-dimensional vs. three-dimensional echocardiography compared with cardiac magnetic resonance imaging. Eur J Echocardiogr 12:656–664

    Article  PubMed  Google Scholar 

  26. Ishizu T, Seo Y, Atsumi A, Tanaka YO, Yamamoto M, Machino-Ohtsuka T et al (2017) Global and regional right ventricular function assessed by novel three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 30:1203–1213

    Article  PubMed  Google Scholar 

  27. Le Tourneau T, Deswarte G, Lamblin N, Foucher-Hossein C, Fayad G, Richardson M et al (2013) Right ventricular systolic function in organic mitral regurgitation: impact of biventricular impairment. Circulation 127:1597–1608

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health (Grant Nos. 1K23 HL140092-01 and 1R01HL128278-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Alakbarli, J., Yum, B. et al. Tissue-based markers of right ventricular dysfunction in ischemic mitral regurgitation assessed via stress cardiac magnetic resonance and three-dimensional echocardiography. Int J Cardiovasc Imaging 35, 683–693 (2019). https://doi.org/10.1007/s10554-018-1500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1500-4

Keywords

Navigation