Skip to main content
Log in

Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Invasive imaging modalities, in particular intravascular ultrasound (IVUS) and optical coherence tomography (OCT), have become established tools for the in vivo study of coronary atherosclerosis. Their use in clinical studies has confirmed histopathological observations that certain important plaque features, such as thin fibrous caps and large lipid cores, are associated with plaque rupture, the precipitating event for the majority of myocardial infarctions. Serial imaging studies have also successfully been used for the evaluation of potential disease modifying pharmacological agents. Recent prospective IVUS studies have confirmed specific baseline imaging features associated with subsequent adverse clinical outcomes, although absolute event rates were too low for clinical utility. Development of hybrid IVUS–OCT imaging or integration of novel techniques, including near-infrared spectroscopy, plaque structural and endothelial shear stress, have great potential to improve our current ability to identify and stratify atheromatous plaques at risk of rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davies MJ, Thomas A (1984) Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl J Med 310(18):1137–1140

    Article  PubMed  CAS  Google Scholar 

  2. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    Article  PubMed  CAS  Google Scholar 

  3. Virmani R (2011) Are our tools for the identification of TCFA ready and Do we know them? JACC Cardiovasc Imaging 4(6):656–658. doi:10.1016/j.jcmg.2011.01.019

    Article  PubMed  Google Scholar 

  4. Obaid DR, Calvert PA, Gopalan D, Parker RA, Hoole SP, West NE, Goddard M, Rudd JH, Bennett MR (2013) Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ Cardiovasc Imaging 6(5):655–664. doi:10.1161/CIRCIMAGING.112.000250

    Article  PubMed  Google Scholar 

  5. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106(17):2200–2206

    Article  PubMed  Google Scholar 

  6. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645

    Article  PubMed  Google Scholar 

  7. Costopoulos C, Latib A, Naganuma T, Miyazaki T, Sato K, Figini F, Sticchi A, Carlino M, Chieffo A, Montorfano M, Colombo A (2014) Comparison of early clinical outcomes between absorb bioresorbable vascular scaffold and everolimus-eluting stent implantation in a real-world population. Catheter Cardiovasc Interv. doi:10.1002/ccd.25569

    Google Scholar 

  8. Jang JS, Song YJ, Kang W, Jin HY, Seo JS, Yang TH, Kim DK, Cho KI, Kim BH, Park YH, Je HG, Kim DS (2014) Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv 7(3):233–243. doi:10.1016/j.jcin.2013.09.013

    Article  PubMed  Google Scholar 

  9. Honda O, Sugiyama S, Kugiyama K, Fukushima H, Nakamura S, Koide S, Kojima S, Hirai N, Kawano H, Soejima H, Sakamoto T, Yoshimura M, Ogawa H (2004) Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol 43(7):1177–1184. doi:10.1016/j.jacc.2003.09.063

    Article  PubMed  Google Scholar 

  10. Bruining N, Verheye S, Knaapen M, Somers P, Roelandt JR, Regar E, Heller I, de Winter S, Ligthart J, Van Langenhove G, de Feijter PJ, Serruys PW, Hamers R (2007) Three-dimensional and quantitative analysis of atherosclerotic plaque composition by automated differential echogenicity. Catheter Cardiovasc Interv 70(7):968–978. doi:10.1002/ccd.21310

    Article  PubMed  Google Scholar 

  11. Hiro T, Leung CY, Russo RJ, Moussa I, Karimi H, Farvid AR, Tobis JM (1996) Variability in tissue characterization of atherosclerotic plaque by intravascular ultrasound: a comparison of four intravascular ultrasound systems. Am J Card Imaging 10(4):209–218

    PubMed  CAS  Google Scholar 

  12. Hodgson JM, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM (1993) Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 21(1):35–44

    Article  PubMed  CAS  Google Scholar 

  13. Nair A, Margolis MP, Kuban BD, Vince DG (2007) Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. EuroIntervention 3(1):113–120

    PubMed  Google Scholar 

  14. Thim T, Hagensen MK, Wallace-Bradley D, Granada JF, Kaluza GL, Drouet L, Paaske WP, Botker HE, Falk E (2010) Unreliable assessment of necrotic core by virtual histology intravascular ultrasound in porcine coronary artery disease. Circ Cardiovasc Imaging 3(4):384–391. doi:10.1161/CIRCIMAGING.109.919357

    Article  PubMed  Google Scholar 

  15. Granada JF, Wallace-Bradley D, Win HK, Alviar CL, Builes A, Lev EI, Barrios R, Schulz DG, Raizner AE, Kaluza GL (2007) In vivo plaque characterization using intravascular ultrasound-virtual histology in a porcine model of complex coronary lesions. Arterioscler Thromb Vasc Biol 27(2):387–393. doi:10.1161/01.ATV.0000253907.51681.0e

    Article  PubMed  CAS  Google Scholar 

  16. Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett MR (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging 4(8):894–901. doi:10.1016/j.jcmg.2011.05.005

    Article  PubMed  Google Scholar 

  17. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364(3):226–235. doi:10.1056/NEJMoa1002358

    Article  PubMed  CAS  Google Scholar 

  18. Cheng JM, Garcia-Garcia HM, de Boer SPM, Kardys I, Heo JH, Akkerhuis KM, Oemrawsingh RM, van Domburg RT, Ligthart J, Witberg KT, Regar E, Serruys PW, van Geuns R-J, Boersma E (2013) In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. doi:10.1093/eurheartj/eht484

    PubMed Central  Google Scholar 

  19. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, Grines CL, DeMaria AN, Investigators R (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 291(9):1071–1080. doi:10.1001/jama.291.9.1071

    Article  PubMed  CAS  Google Scholar 

  20. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, Raichlen JS, Uno K, Borgman M, Wolski K, Nissen SE (2011) Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med 365(22):2078–2087. doi:10.1056/NEJMoa1110874

    Article  PubMed  CAS  Google Scholar 

  21. Raber L, Taniwaki M, Zaugg S, Kelbaek H, Roffi M, Holmvang L, Noble S, Pedrazzini G, Moschovitis A, Luscher TF, Matter CM, Serruys PW, Juni P, Garcia-Garcia HM, Windecker S, Investigators IT (2015) Effect of high-intensity statin therapy on atherosclerosis in non-infarct-related coronary arteries (IBIS-4): a serial intravascular ultrasonography study. Eur Heart J 36(8):490–500. doi:10.1093/eurheartj/ehu373

    Article  PubMed  Google Scholar 

  22. Nissen SE, Tardif JC, Nicholls SJ, Revkin JH, Shear CL, Duggan WT, Ruzyllo W, Bachinsky WB, Lasala GP, Tuzcu EM, Investigators I (2007) Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med 356(13):1304–1316. doi:10.1056/NEJMoa070635

    Article  PubMed  CAS  Google Scholar 

  23. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Shear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B, Investigators I (2007) Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 357(21):2109–2122. doi:10.1056/NEJMoa0706628

    Article  PubMed  CAS  Google Scholar 

  24. Sipahi I, Tuzcu EM, Schoenhagen P, Wolski KE, Nicholls SJ, Balog C, Crowe TD, Nissen SE (2006) Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 48(4):833–838. doi:10.1016/j.jacc.2006.05.045

    Article  PubMed  Google Scholar 

  25. Hong MK, Park DW, Lee CW, Lee SW, Kim YH, Kang DH, Song JK, Kim JJ, Park SW, Park SJ (2009) Effects of statin treatments on coronary plaques assessed by volumetric virtual histology intravascular ultrasound analysis. JACC Cardiovasc Interv 2(7):679–688. doi:10.1016/j.jcin.2009.03.015

    Article  PubMed  Google Scholar 

  26. Miyagi M, Ishii H, Murakami R, Isobe S, Hayashi M, Amano T, Arai K, Ohashi T, Uetani T, Matsubara T, Murohara T (2009) Impact of long-term statin treatment on coronary plaque composition at angiographically severe lesions: a nonrandomized study of the history of long-term statin treatment before coronary angioplasty. Clin Ther 31(1):64–73. doi:10.1016/j.clinthera.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  27. Serruys PW, Garcia-Garcia HM, Buszman P, Erne P, Verheye S, Aschermann M, Duckers H, Bleie O, Dudek D, Botker HE, von Birgelen C, D’Amico D, Hutchinson T, Zambanini A, Mastik F, van Es GA, van der Steen AF, Vince DG, Ganz P, Hamm CW, Wijns W, Zalewski A, Integrated B, Imaging Study I (2008) Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation 118(11):1172–1182. doi:10.1161/CIRCULATIONAHA.108.771899

    Article  PubMed  CAS  Google Scholar 

  28. Costopoulos C, Liew TV, Bennett M (2008) Ageing and atherosclerosis: mechanisms and therapeutic options. Biochem Pharmacol 75(6):1251–1261. doi:10.1016/j.bcp.2007.10.006

    Article  PubMed  CAS  Google Scholar 

  29. Tearney GJ, Yabushita H, Houser SL, Aretz HT, Jang I-K, Schlendorf KH, Kauffman CR, Shishkov M, Halpern EF, Bouma BE (2003) Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1):113–119. doi:10.1161/01.cir.0000044384.41037.43

    Article  PubMed  Google Scholar 

  30. Brown AJ, Obaid DR, West NEJ, Goddard M, Bennett MR (2015) Cholesterol crystals identified using optical coherence tomography and virtual histology intravascular ultrasound. EuroIntervention 11(2):e1. doi:10.4244/eijv11i2a38

    Article  PubMed  Google Scholar 

  31. Low AF, Tearney GJ, Bouma BE, Jang IK (2006) Technology Insight: optical coherence tomography–current status and future development. Nat Clin Pract Cardiovasc Med 3 (3):154–162; quiz 172. doi:10.1038/ncpcardio0482

  32. Abela GS, Aziz K, Vedre A, Pathak DR, Talbott JD, Dejong J (2009) Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol 103(7):959–968. doi:10.1016/j.amjcard.2008.12.019

    Article  PubMed  CAS  Google Scholar 

  33. Kitabata H, Tanaka A, Kubo T, Takarada S, Kashiwagi M, Tsujioka H, Ikejima H, Kuroi A, Kataiwa H, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T (2010) Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease. Am J Cardiol 105(12):1673–1678. doi:10.1016/j.amjcard.2010.01.346

    Article  PubMed  Google Scholar 

  34. Jang I-K, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111(12):1551–1555. doi:10.1161/01.cir.0000159354.43778.69

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mizukoshi M, Imanishi T, Tanaka A, Kubo T, Liu Y, Takarada S, Kitabata H, Tanimoto T, Komukai K, Ishibashi K, Akasaka T (2010) Clinical classification and plaque morphology determined by optical coherence tomography in unstable angina pectoris. Am J Cardiol 106(3):323–328

    Article  PubMed  Google Scholar 

  36. Fujii K, Kawasaki D, Masutani M, Okumura T, Akagami T, Sakoda T, Tsujino T, Ohyanagi M, Masuyama T (2010) OCT assessment of thin-cap fibroatheroma distribution in native coronary arteries. JACC Cardiovasc Imaging 3(2):168–175. doi:10.1016/j.jcmg.2009.11.004

    Article  PubMed  Google Scholar 

  37. Cheruvu PK, Finn AV, Gardner C, Caplan J, Goldstein J, Stone GW, Virmani R, Muller JE (2007) Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol 50(10):940–949. doi:10.1016/j.jacc.2007.04.086

    Article  PubMed  Google Scholar 

  38. Raffel OC, Merchant FM, Tearney GJ, Chia S, Gauthier DD, Pomerantsev E, Mizuno K, Bouma BE, Jang IK (2008) In vivo association between positive coronary artery remodelling and coronary plaque characteristics assessed by intravascular optical coherence tomography. Eur Heart J 29(14):1721–1728. doi:10.1093/eurheartj/ehn286

    Article  PubMed  PubMed Central  Google Scholar 

  39. Raffel OC, Tearney GJ, Gauthier DD, Halpern EF, Bouma BE, Jang IK (2007) Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography. Arterioscler Thromb Vasc Biol 27(8):1820–1827. doi:10.1161/ATVBAHA.107.145987

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Ino Y, Kubo T, Tanaka A, Kuroi A, Tsujioka H, Ikejima H, Okouchi K, Kashiwagi M, Takarada S, Kitabata H, Tanimoto T, Komukai K, Ishibashi K, Kimura K, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2011) Difference of culprit lesion morphologies between st-segment elevation myocardial infarction and non–st-segment elevation acute coronary syndrome: an optical coherence tomography study. JACC Cardiovasc Interv 4(1):76–82. doi:10.1016/j.jcin.2010.09.022

    Article  PubMed  Google Scholar 

  41. Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, Nakagawa H, Somekawa S, Takeda Y, Kawata H, Horii M, Saito Y (2012) Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 33(1):78–85. doi:10.1093/eurheartj/ehr284

    Article  PubMed  Google Scholar 

  42. Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J, Virmani R (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103(7):934–940

    Article  PubMed  CAS  Google Scholar 

  43. Komukai K, Kubo T, Kitabata H, Matsuo Y, Ozaki Y, Takarada S, Okumoto Y, Shiono Y, Orii M, Shimamura K, Ueno S, Yamano T, Tanimoto T, Ino Y, Yamaguchi T, Kumiko H, Tanaka A, Imanishi T, Akagi H, Akasaka T (2014) Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J Am Coll Cardiol 64(21):2207–2217. doi:10.1016/j.jacc.2014.08.045

    Article  PubMed  CAS  Google Scholar 

  44. Bourantas CV, Garcia-Garcia HM, Naka KK, Sakellarios A, Athanasiou L, Fotiadis DI, Michalis LK, Serruys PW (2013) Hybrid intravascular imagingcurrent applications and prospective potential in the study of coronary atherosclerosis. J Am Coll Cardiol 61(13):1369–1378

    Article  PubMed  Google Scholar 

  45. Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K (2006) Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 152(4):e1–e4

    Article  PubMed  Google Scholar 

  46. Inaba S, Mintz GS, Farhat NZ, Fajadet J, Dudek D, Marzocchi A, Templin B, Weisz G, Xu K, de Bruyne B, Serruys PW, Stone GW, Maehara A (2014) Impact of positive and negative lesion site remodeling on clinical outcomes: insights from PROSPECT. JACC Cardiovasc Imaging 7(1):70–78. doi:10.1016/j.jcmg.2013.10.007

    Article  PubMed  Google Scholar 

  47. Sales FJ, Falcao BA, Falcao JL, Ribeiro EE, Perin MA, Horta PE, Spadaro AG, Ambrose JA, Martinez EE, Furuie SS, Lemos PA (2010) Evaluation of plaque composition by intravascular ultrasound “virtual histology”: the impact of dense calcium on the measurement of necrotic tissue. EuroIntervention 6(3):394–399

    Article  PubMed  Google Scholar 

  48. van Soest G, Regar E, Goderie TPM, Gonzalo N, Koljenović S, van Leenders GJLH, Serruys PW, van der Steen AFW (2011) Pitfalls in plaque characterization by octimage artifacts in native coronary arteries. JACC Cardiovasc Imaging 4(7):810–813

    Article  PubMed  Google Scholar 

  49. Obaid DR, Calvert PA, McNab D, West NEJ, Bennett MR (2012) Identification of coronary plaque sub-types using virtual histology intravascular ultrasound is affected by inter-observer variability and differences in plaque definitions. Circ Cardiovasc Imaging 5(1):86–93. doi:10.1161/circimaging.111.965442

    Article  PubMed  Google Scholar 

  50. Goderie TP, van Soest G, Garcia-Garcia HM, Gonzalo N, Koljenovic S, van Leenders GJ, Mastik F, Regar E, Oosterhuis JW, Serruys PW, van der Steen AF (2010) Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro. Int J Cardiovasc Imaging 26(8):843–850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, Tamaru H, Sawada H, Naito Y, Ohyanagi M, Hirota S, Masuyama T (2015) Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study. JACC Cardiovasc Imaging [Epub ahead of print]

  52. Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, Matsumoto D, Tanino Y, Ogasawara D, Kawamori H, Kato H, Miyoshi N, Yokoyama M, Serruys PW, Hirata K (2008) Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J 29(9):1136–1146

    Article  PubMed  Google Scholar 

  53. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, Tanimoto T, Matsuo Y, Masho T, Kitabata H, Tsuda K, Tomobuchi Y, Akasaka T (2007) Assessment of Culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50(10):933–939

    Article  PubMed  Google Scholar 

  54. Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, Onuma Y, Ligthart J, Serruys PW (2009) In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging 2(4):473–482

    Article  PubMed  Google Scholar 

  55. Yin J, Yang HC, Li X, Zhang J, Zhou Q, Hu C, Shung KK, Chen Z (2010) Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Optics 15(1):010512

    Article  Google Scholar 

  56. Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, Edris A, Hoang K, Shung KK, Brenner M, Narula J, Zhou Q, Chen Z (2011) Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Optics 16(6):060505

    Article  Google Scholar 

  57. Li BH, Leung ASO, Soong A, Munding CE, Lee H, Thind AS, Munce NR, Wright GA, Rowsell CH, Yang VXD, Strauss BH, Stuart Foster F, Courtney BK (2013) Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter Cardiovasc Interv 81(3):494–507

    Article  PubMed  Google Scholar 

  58. Li J, Ma T, Jing J, Zhang J, Patel PM, Kirk Shung K, Zhou Q, Chen Z (2013) Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J Biomed Optics 18(10):100502

    Article  Google Scholar 

  59. Brown AJ, Costopoulos C, West NE, Bennett MR (2015) Contemporary invasive imaging modalities that identify and risk-stratify coronary plaques at risk of rupture. Expert Rev Cardiovasc Therapy 13(1):9–13. doi:10.1586/14779072.2015.989836

    Article  CAS  Google Scholar 

  60. Caplan JD, Waxman S, Nesto RW, Muller JE (2006) Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 47(8 Suppl):C92–C96

    Article  PubMed  Google Scholar 

  61. Kang SJ, Mintz GS, Pu J, Sum ST, Madden SP, Burke AP, Xu K, Goldstein JA, Stone GW, Muller JE, Virmani R, Maehara A (2015) Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries. JACC Cardiovasc Imaging 8(2):184–194

    Article  PubMed  Google Scholar 

  62. Madder RD, Goldstein JA, Madden SP, Puri R, Wolski K, Hendricks M, Sum ST, Kini A, Sharma S, Rizik D, Brilakis ES, Shunk KA, Petersen J, Weisz G, Virmani R, Nicholls SJ, Maehara A, Mintz GS, Stone GW, Muller JE (2013) Detection by Near-Infrared Spectroscopy of Large Lipid Core Plaques at Culprit Sites in Patients With Acute ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc Interv 6(8):838–846. doi:10.1016/j.jcin.2013.04.012

    Article  PubMed  Google Scholar 

  63. Goldstein JA, Maini B, Dixon SR, Brilakis ES, Grines CL, Rizik DG, Powers ER, Steinberg DH, Shunk KA, Weisz G, Moreno PR, Kini A, Sharma SK, Hendricks MJ, Sum ST, Madden SP, Muller JE, Stone GW, Kern MJ (2011) Detection of lipid-core plaques by intracoronary near-infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv 4(5):429–437. doi:10.1161/circinterventions.111.963264

    Article  PubMed  Google Scholar 

  64. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944

    Article  PubMed  CAS  Google Scholar 

  65. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4):1179–1187

    Article  PubMed  CAS  Google Scholar 

  66. Lee RT, Loree HM, Cheng GC, Lieberman EH, Jaramillo N, Schoen FJ (1993) Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations. J Am Coll Cardiol 21(3):777–782

    Article  PubMed  CAS  Google Scholar 

  67. Teng Z, Brown AJ, Calvert PA, Parker RA, Obaid DR, Huang Y, Hoole SP, West NE, Gillard JH, Bennett MR (2014) Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study. Circ Cardiovasc Imaging 7(3):461–470. doi:10.1161/CIRCIMAGING.113.001526

    Article  PubMed  Google Scholar 

  68. Dhawan SS, Avati Nanjundappa RP, Branch JR, Taylor WR, Quyyumi AA, Jo H, McDaniel MC, Suo J, Giddens D, Samady H (2010) Shear stress and plaque development. Expert review of cardiovascular Therapy 8(4):545–556. doi:10.1586/erc.10.28

    Article  PubMed  Google Scholar 

  69. Koskinas KC, Chatzizisis YS, Papafaklis MI, Coskun AU, Baker AB, Jarolim P, Antoniadis A, Edelman ER, Stone PH, Feldman CL (2013) Synergistic effect of local endothelial shear stress and systemic hypercholesterolemia on coronary atherosclerotic plaque progression and composition in pigs. Int J Cardiol 169(6):394–401. doi:10.1016/j.ijcard.2013.10.021

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koskinas KC, Sukhova GK, Baker AB, Papafaklis MI, Chatzizisis YS, Coskun AU, Quillard T, Jonas M, Maynard C, Antoniadis AP, Shi GP, Libby P, Edelman ER, Feldman CL, Stone PH (2013) Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler Thromb Vasc Biol 33(7):1494–1504. doi:10.1161/ATVBAHA.112.300827

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Pedrigi RM, de Silva R, Bovens SM, Mehta VV, Petretto E, Krams R (2014) Thin-cap fibroatheroma rupture is associated with a fine interplay of shear and wall stress. Arterioscler Thromb Vasc Biol 34(10):2224–2231. doi:10.1161/ATVBAHA.114.303426

    Article  PubMed  CAS  Google Scholar 

  72. Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788. doi:10.1161/CIRCULATIONAHA.111.021824

    Article  PubMed  CAS  Google Scholar 

  73. Gopalakrishnan M, Silva-Palacios F, Taytawat P, Pant R, Klein L (2014) Role of inflammatory mediators in the pathogenesis of plaque rupture. J Invasive Cardiol 26(9):484–492

    PubMed  Google Scholar 

  74. Nasu K, Tsuchikane E, Katoh O, Tanaka N, Kimura M, Ehara M, Kinoshita Y, Matsubara T, Matsuo H, Asakura K, Asakura Y, Terashima M, Takayama T, Honye J, Hirayama A, Saito S, Suzuki T (2009) Effect of fluvastatin on progression of coronary atherosclerotic plaque evaluated by virtual histology intravascular ultrasound. JACC Cardiovasc Interv 2(7):689–696. doi:10.1016/j.jcin.2009.04.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by British Heart Foundation grants FS/13/33/30168, RG/13/14/30314, Heart Research UK grant RG2638/14/16 and the NIHR Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Brown.

Ethics declarations

Conflict of interest

None.

Additional information

Charis Costopoulos and Adam J. Brown have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costopoulos, C., Brown, A.J., Teng, Z. et al. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. Int J Cardiovasc Imaging 32, 189–200 (2016). https://doi.org/10.1007/s10554-015-0701-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0701-3

Keywords

Navigation