Skip to main content
Log in

Left ventricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in patients with acute myocardial infarction treated with primary percutaneous coronary intervention

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To determine whether left ventricular (LV) global longitudinal strain (GLS) predicts adverse LV remodeling and cardiac events. In a prospective cohort study of patients with acute myocardial infarction (AMI) undergoing primary percutaneous coronary intervention (PCI), we recorded clinical data and GLS, global circumferential strain and radial strain using two-dimensional speckle-tracking echocardiography of the left ventricle. At 6-month and 3-year follow-ups, patients were grouped by presence or absence of adverse LV remodeling. We used logistic regression to identify factors associated with adverse LV remodeling and a Cox model to determine the relationships between these factors and cardiac events. Of 97 patients (mean age 56 ± 12 years; 76 men), 38 showed LV remodeling. Diabetes mellitus [odds ratio (OR) 1.95 % confidence interval (CI) 1.2–4.8, p = 0.05], peak troponin I (OR 1.2, 95 % CI 1.1–1.3, p = 0.004), and GLS (OR 1.6, 95 % CI 1.3–2.3, p = 0.009) independently predicted LV remodeling. During follow-up (22.8 ± 12.3 months), 20 patients suffered adverse events, which were independently predicted by GLS alone (OR 4.9, 95 % CI 1.7–13.9, p = 0.002). Optimal GLS cutoffs for predicting adverse LV remodeling and cardiac events were >−12.46 % [area under receiver operating-characteristic curve (AUC) 0.88, 95 % CI 0.79–0.96, p < 0.001] and >−9.27 % (AUC 0.86, 95 % CI 0.64–0.98, p < 0.001), respectively. GLS measured immediately after primary PCI is an excellent predictor of adverse LV remodeling and cardiac events in patients with AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanism and early predictors. Circulation 87:755–763

    Article  CAS  PubMed  Google Scholar 

  2. Sutton MSJ, Lee D, Rouleau JL, Goldman S, Plappert T, Braunwald E, Pfeffer MA (2003) Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation 107:2577–2582

    Google Scholar 

  3. Leclercq F, Messner-Pellenc P, Moragues C, Rivalland F, Carabasse D, Davy J-M, Grolleau-Raoux R (1997) Myocardial viability assessed by dobutamine echocardiography in acute myocardial infarction after successful primary coronary angioplasty. Am J Cardiol 80:6–10

    Article  CAS  PubMed  Google Scholar 

  4. Main ML, Hannen MN, Kusnetzky LL, Martin JL, Coggins TR, Lanza PA, Morris BA, Magalski A, Jones PG (2006) Myocardial contrast echocardiographic estimates of infarct size predict likelihood of left ventricular remodeling after anterior wall myocardial infarction. J Am Soc Echocardiogr 19:64–70

    Article  PubMed  Google Scholar 

  5. Belohlavek M, Pislaru C, Bae R, Greenleaf J, Seward JB (2001) Real-time strain rate echocardiographic imaging: temporal and spatial analysis of postsystolic compression in acutely ischemic myocardium. J Am Soc Echocardiogr 14:360–369

    Article  CAS  PubMed  Google Scholar 

  6. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029

    Article  PubMed  Google Scholar 

  7. Sjøli B, Ørn S, Grenne B, Vartdal T, Smiseth OA, Edvardsen T, Brunvand H (2009) Comparison of left ventricular ejection fraction and left ventricular global strain as determinants of infarct size in patients with acute myocardial infarction. J Am Soc Echocardiogr 22:1232–1238

    Article  PubMed  Google Scholar 

  8. Vartdal T, Brunvand H, Pettersen E, Smith HJ, Lyseggen E, Helle-Valle T, Skulstad H, Ihlen H, Edvardsen T (2007) Early prediction of infarct size by strain doppler echocardiography after coronary reperfusion. J Am Coll Cardiol 49:1715–1721

    Article  PubMed  Google Scholar 

  9. Park YH, Kang SJ, Song JK, Lee EY, Song JM, Kang DH, Kim YH, Lee CW, Hong MK, Kim JJ, Park SW, Park SJ (2008) Prognostic value of longitudinal strain after primary reperfusion therapy in patients with anterior-wall acute myocardial infarction. J Am Soc Echocardiogr 21:262–267

    Article  PubMed  Google Scholar 

  10. Bochenek T, Wita K, Tabor Z, Grabka M, Krzych Ł, Wróbel W, Berger-Kucza A, Elżbieciak M, Doruchowska A, Gluza MT (2011) Value of speckle-tracking echocardiography for prediction of left ventricular remodeling in patients with ST-elevation myocardial infarction treated by primary percutaneous intervention. J Am Soc Echocardiogr 24:1342–1348

    Article  PubMed  Google Scholar 

  11. St John SM, Pfeffer MA, Plappert T, Rouleau JL, Moye LA, Dagenais GR, Lamas GA, Klein M, Sussex B, Goldman S (1994) Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89:68–75

    Article  Google Scholar 

  12. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  13. Wood P, Choy JB, Nanda NC, Becher H (2014) Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography 31:87–100

    Article  PubMed Central  PubMed  Google Scholar 

  14. Woo JS, Kim WS, Yu TK, Ha SJ, Kim SY, Bae JH, Kim KS (2011) Prognostic value of serial global longitudinal strain measured by two-dimensional speckle tracking echocardiography in patients with ST-segment elevation myocardial infarction. Am J Cardiol 108:340–347

    Article  PubMed  Google Scholar 

  15. Antoni ML, Mollema SA, Delgado V, Atary JZ, Borleffs CJ, Boersma E, Holman ER, van der Wall EE, Schalij MJ, Bax JJ (2010) Prognostic importance of strain and strain rate after acute myocardial infarction. Eur Heart J 31:1640–1647

    Article  PubMed  Google Scholar 

  16. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Guidelines and standards. J Am Soc Echocardiol 22:107–133

    Article  Google Scholar 

  17. Chan J, Hanekom L, Wong C, Leano R, Cho GY, Marwick TH (2006) Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J Am Coll Cardiol 48:2026–2033

    Article  PubMed  Google Scholar 

  18. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351–2357

    Article  PubMed  Google Scholar 

  19. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Yancy CW (2013) American College of Emergency Physicians; society for cardiovascular angiography and interventions. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American Collogue of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 61:78–140

    Article  Google Scholar 

  20. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 81:1161–1172

    Article  CAS  PubMed  Google Scholar 

  21. Lee KL, Woodlief LH, Topol EJ, Weaver WD, Betriu A, Col J, Simoons M, Aylward P, Van de Werf F, Califf RM (1995) Predictors of 30-day mortality in the era of reperfusion for acute myocardial infarction. Results from an international trial of 41,021 patients. GUSTO-I Investigators. Circulation 91:1659–1668

    Article  CAS  PubMed  Google Scholar 

  22. Moller JE, Hillis GS, Oh JK, Reeder GS, Gersh BJ, Pellikka PA (2006) Wall motion score index and ejection fraction for risk stratification after acute myocardial infarction. Am Heart J 151:419–425

    Article  PubMed  Google Scholar 

  23. Munk K, Andersen NH, Terkelsen CJ, Bibby BM, Johnsen SP, Bøtker HE, Nielsen TT, Poulsen SH (2012) Global left ventricular longitudinal systolic strain for early risk assessment in patients with acute myocardial infarction treated with primary percutaneous intervention. J Am Soc Echocardiogr 25:644–651

    Article  PubMed  Google Scholar 

  24. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56

    Article  PubMed  Google Scholar 

  25. Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, Solomon SD, VALIANT Investigators (2010) Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. J Am Coll Cardiol 56:1812–1822

    Article  PubMed  Google Scholar 

  26. Takeuchi M, Nishikage T, Nakai H, Kokumai M, Otani S, Lang RM (2007) The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr 20:36–44

    Article  PubMed  Google Scholar 

  27. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ (2009) Global two-dimensional strain as a new prognosticator in patients with heart failure. J Am Coll Cardiol 54:618–624

    Article  PubMed  Google Scholar 

  28. Abate E, Hoogslag GE, Antoni ML, Nucifora G, Delgado V, Holman ER, Schalij MJ, Bax JJ, Marsan NA (2012) Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol 110:961–967

    Article  PubMed  Google Scholar 

  29. Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364

    Article  PubMed  Google Scholar 

  30. Thune JJ, Kober L, Pfeffer MA, Skali H, Anavekar NS, Bourgoun M, Ghali JK, Arnold JM, Velazquez EJ, Solomon SD (2006) Comparison of regional versus global assessment of left ventricular function in patients with left ventricular dysfunction, heart failure, or both after myocardial infarction: the valsartan in acute myocardial infarction echocardiographic study. J Am Soc Echocardiogr 19:1462–1465

    Article  PubMed  Google Scholar 

  31. D’Andrea A, Cocchia R, Caso P, Riegler L, Scarafile R, Salerno G, Golia E, Di Salvo G, Calabrò P, Bigazzi MC, Liccardo B, Esposito N, Cuomo S, Bossone E, Russo MG, Calabrò R (2011) Global longitudinal speckle-tracking strain is predictive of left ventricular remodeling after coronary angioplasty in patients with recent non-ST elevation myocardial infarction. Int J Cardiol 153:185–191

    Article  PubMed  Google Scholar 

  32. Van de Werf F, Bax J, Betriu A, Blomstrom-Lundqvist C, Crea F, Falk V, Filippatos G, Fox K, Huber K, Kastrati A, Rosengren A, Steg PG, Tubaro M, Verheugt F, Weidinger F, Weis M, ESC Committee for Practice Guidelines (CPG) (2008) Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur Heart J 29:2909–2945

    Article  PubMed  Google Scholar 

  33. Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, Hassager C, Søgaard P, Køber L (2013) Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 11:2365–2373

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Lacalzada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lacalzada, J., de la Rosa, A., Izquierdo, M.M. et al. Left ventricular global longitudinal systolic strain predicts adverse remodeling and subsequent cardiac events in patients with acute myocardial infarction treated with primary percutaneous coronary intervention. Int J Cardiovasc Imaging 31, 575–584 (2015). https://doi.org/10.1007/s10554-015-0593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0593-2

Keywords

Navigation