Skip to main content
Log in

Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering

  • Commentary
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The Fontan operation has evolved over the last four and a half decades and is now widely applied to patients with various forms of “single ventricle” congenital heart disease. Survival has greatly improved since the early years, but long-term morbidity and mortality continue to occur. Modeling of Fontan geometries, both in vitro and using computational fluid dynamics, has been instrumental in designing novel changes to Fontan’s operation, including the application of staged surgical procedures leading to a total cavopulmonary anastomosis, lateral tunnel, extracardiac conduit, and most recently bifurcated Y-graft modifications. In this review, the history of modeling of Fontan physiologies, current state-of-the-art methodologies, and future directions are explored. The application of these techniques to cardiac magnetic resonance imaging to construct patient specific anatomies offers the possibility of individualized surgical planning to optimize hemodynamics, including minimizing power loss, balancing hepatic factor distribution, and ultimately improving patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, Roos-Hesselink JW (2011) Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 58:2241–2247

    Article  PubMed  Google Scholar 

  2. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  3. Abid D, Elloumi A, Abid L, Mallek S, Aloulou H, Chabchoub I, Bouraoui A, Thabet A, Gargouri L, Zribi M, Yaich S, Hachicha M, Gargouri A, Mahfoudh A, Maatoug S, Dammak J, Kammoun S (2013) Congenital heart disease in 37,294 births in Tunisia: birth prevalence and mortality rate. Cardiol Young (Epub ahead of print):1–6

  4. Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Choussat A, Fontan F, Besse F (1978) Selection criteria for Fontan’s procedure. In: Anderson RH, Shinebourne E (eds) Paediatric cardiology. Churchhill Livingstone, Edinburgh, pp 559–566

    Google Scholar 

  6. Norwood WI, Lang P, Casteneda AR, Campbell DN (1981) Experience with operations for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 82:511–519

    CAS  PubMed  Google Scholar 

  7. Mazzera E, Corno A, Picardo S, Di Donato R, Marino B, Costa D, Marcelletti C (1989) Bidirectional cavopulmonary shunts: clinical applications as staged or definitive palliation. Ann Thorac Surg 47:415–420

    Article  CAS  PubMed  Google Scholar 

  8. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695

    PubMed  Google Scholar 

  9. Marcelletti C, Corno A, Giannico S, Marino B (1990) Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass. J Thorac Cardiovasc Surg 100:228–232

    CAS  PubMed  Google Scholar 

  10. Gewillig M (2005) The Fontan circulation. Heart 91:839–846

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mair DD, Rice MJ, Hagler DJ, Puga FJ, McGoon DC, Danielson GK (1985) Outcome of the Fontan procedure in patients with tricuspid atresia. Circulation 72:II88–92

  12. Jacobs JP, O’Brien SM, Pasquali SK, Jacobs ML, Lacour-Gayet FG, Tchervenkov CI, Austin EH III, Pizarro C, Pourmoghadam KK, Scholl FG, Welke KF, Mavroudis C (2011) Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg 92:2184–2191; discussion 2191–2182

  13. Girod DA, Fontan F, Deville C, Ottenkamp J, Choussat A (1987) Long-term results after the Fontan operation for tricuspid atresia. Circulation 75:605–610

    Article  CAS  PubMed  Google Scholar 

  14. Fontan F, Kirklin JW, Fernandez G, Costa F, Naftel DC, Tritto F, Blackstone EH (1990) Outcome after a “perfect” Fontan operation. Circulation 81:1520–1536

    Article  CAS  PubMed  Google Scholar 

  15. Kirklin JK, Brown RN, Bryant AS, Naftel DC, Colvin EV, Pearce FB, Romp RL, Johnson WH, Lau YR, McMahon WS, Knott-Craig CJ, Pacifico AD (2008) Is the “perfect Fontan” operation routinely achievable in the modern era? Cardiol Young 18:328–336

    Article  PubMed  Google Scholar 

  16. Khairy P, Fernandes SM, Mayer JE Jr, Triedman JK, Walsh EP, Lock JE, Landzberg MJ (2008) Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery. Circulation 117:85–92

    Article  PubMed  Google Scholar 

  17. Cheung YF, Penny DJ, Redington AN (2000) Serial assessment of left ventricular diastolic function after Fontan procedure. Heart 83:420–424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Szabo G, Bahrle S (2005) Contractility-afterload mismatch after the Fontan operation. Cardiol Young 15(Suppl 3):35–38

    Article  PubMed  Google Scholar 

  19. Mace L, Dervanian P, Bourriez A, Mazmanian GM, Lambert V, Losay J, Neveux JY (2000) Changes in venous return parameters associated with univentricular Fontan circulations. Am J Physiol Heart Circ Physiol 279:H2335–H2343

    CAS  PubMed  Google Scholar 

  20. Kelley JR, Mack GW, Fahey JT (1995) Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation. Am J Cardiol 76:158–163

    Article  CAS  PubMed  Google Scholar 

  21. d’Udekem Y, Cheung MM, Setyapranata S, Iyengar AJ, Kelly P, Buckland N, Grigg LE, Weintraub RG, Vance A, Brizard CP, Penny DJ (2009) How good is a good Fontan? Quality of life and exercise capacity of Fontans without arrhythmias. Ann Thorac Surg 88:1961–1969

    Article  PubMed  Google Scholar 

  22. d’Udekem Y, Iyengar AJ, Cochrane AD, Grigg LE, Ramsay JM, Wheaton GR, Penny DJ, Brizard CP (2007) The Fontan procedure: contemporary techniques have improved long-term outcomes. Circulation 116:I157–I164

    PubMed  Google Scholar 

  23. Nurnberg JH, Ovroutski S, Alexi-Meskishvili V, Ewert P, Hetzer R, Lange PE (2004) New onset arrhythmias after the extracardiac conduit Fontan operation compared with the intraatrial lateral tunnel procedure: early and midterm results. Ann Thorac Surg 78:1979–1988; discussion 1988

  24. Durongpisitkul K, Driscoll DJ, Mahoney DW, Wollan PC, Mottram CD, Puga FJ, Danielson GK (1997) Cardiorespiratory response to exercise after modified Fontan operation: determinants of performance. J Am Coll Cardiol 29:785–790

    Article  CAS  PubMed  Google Scholar 

  25. Giardini A, Hager A, Pace Napoleone C, Picchio FM (2008) Natural history of exercise capacity after the Fontan operation: a longitudinal study. Ann Thorac Surg 85:818–821

    Article  PubMed  Google Scholar 

  26. Bulut OP, Romero R, Mahle WT, McConnell M, Braithwaite K, Shehata BM, Gupta NA, Vos M, Alazraki A (2013) Magnetic resonance imaging identifies unsuspected liver abnormalities in patients after the Fontan procedure. J Pediatr 163:201–206

    Article  PubMed  Google Scholar 

  27. Elder RW, McCabe NM, Hebson C, Veledar E, Romero R, Ford RM, Mahle WT, Kogon BE, Sahu A, Jokhadar M, McConnell ME, Book WM (2013) Features of portal hypertension are associated with major adverse events in Fontan patients: the VAST study. Int J Cardiol 168:3764–3769

    Article  PubMed  Google Scholar 

  28. Ghaferi AA, Hutchins GM (2005) Progression of liver pathology in patients undergoing the Fontan procedure: chronic passive congestion, cardiac cirrhosis, hepatic adenoma, and hepatocellular carcinoma. J Thorac Cardiovasc Surg 129:1348–1352

    Article  PubMed  Google Scholar 

  29. Mertens L, Hagler DJ, Sauer U, Somerville J, Gewillig M (1998) Protein-losing enteropathy after the Fontan operation: an international multicenter study. PLE study group. J Thorac Cardiovasc Surg 115:1063–1073

    Article  CAS  PubMed  Google Scholar 

  30. Weber HS (2001) Incidence and predictors for the development of significant supradiaphragmatic decompressing venous collateral channels following creation of Fontan physiology. Cardiol Young 11:289–294

    Article  CAS  PubMed  Google Scholar 

  31. Kim SJ, Bae EJ, Lee JY, Lim HG, Lee C, Lee CH (2009) Inclusion of hepatic venous drainage in patients with pulmonary arteriovenous fistulas. Ann Thorac Surg 87:548–553

    Article  PubMed  Google Scholar 

  32. Srivastava D, Preminger T, Lock JE, Mandell V, Keane JF, Mayer JE Jr, Kozakewich H, Spevak PJ (1995) Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 92:1217–1222

    Article  CAS  PubMed  Google Scholar 

  33. Justino H, Benson LN, Freedom RM (2001) Development of unilateral pulmonary arteriovenous malformations due to unequal distribution of hepatic venous flow. Circulation 103:E39–E40

    Article  CAS  PubMed  Google Scholar 

  34. Frakes DH, Conrad CP, Healy TM, Monaco JW, Fogel M, Sharma S, Smith MJ, Yoganathan AP (2003) Application of an adaptive control grid interpolation technique to morphological vascular reconstruction. IEEE Trans Biomed Eng 50:197–206

    Article  PubMed  Google Scholar 

  35. Frakes DH, Smith MJ, Parks J, Sharma S, Fogel SM, Yoganathan AP (2005) New techniques for the reconstruction of complex vascular anatomies from MRI images. J Cardiovasc Magn Reson 7:425–432

    Article  PubMed  Google Scholar 

  36. de Zelicourt D, Ge L, Wang C, Sotiropoulos F, Gilmanov A, Yoganathan AP (2009) Flow simulations in arbitrarily complex cardiovascular anatomies-an unstructured cartesian grid approach. Comput Fluids 38:1749–1762

    Article  Google Scholar 

  37. Pekkan K, Whited B, Kanter K, Sharma S, de Zelicourt D, Sundareswaran K, Frakes D, Rossignac J, Yoganathan AP (2008) Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Med Biol Eng Comput 46:1139–1152

    Article  PubMed  Google Scholar 

  38. de Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg 111:502–513

    Article  PubMed  Google Scholar 

  39. Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J Biomech 29:111–121

    Article  CAS  PubMed  Google Scholar 

  40. Migliavacca F, de Leval MR, Dubini G, Pietrabissa R, Fumero R (1999) Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med Eng Phys 21:187–193

    Article  CAS  PubMed  Google Scholar 

  41. Migliavacca F, Kilner PJ, Pennati G, Dubini G, Pietrabissa R, Fumero R, de Leval MR (1999) Computational fluid dynamic and magnetic resonance analyses of flow distribution between the lungs after total cavopulmonary connection. IEEE Trans Biomed Eng 46:393–399

    Article  CAS  PubMed  Google Scholar 

  42. Hsia TY, Migliavacca F, Pittaccio S, Radaelli A, Dubini G, Pennati G, de Leval M (2004) Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. J Surg Res 116:305–313

    Article  PubMed  Google Scholar 

  43. Sharma S, Goudy S, Walker P, Panchal S, Ensley A, Kanter K, Tam V, Fyfe D, Yoganathan A (1996) In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol 27:1264–1269

    Article  CAS  PubMed  Google Scholar 

  44. Amodeo A, Grigioni M, Oppido G, Daniele C, D’Avenio G, Pedrizzetti G, Giannico S, Filippelli S, Di Donato RM (2002) The beneficial vortex and best spatial arrangement in total extracardiac cavopulmonary connection. J Thorac Cardiovasc Surg 124:471–478

    Article  PubMed  Google Scholar 

  45. Ensley AE, Lynch P, Chatzimavroudis GP, Lucas C, Sharma S, Yoganathan AP (1999) Toward designing the optimal total cavopulmonary connection: an in vitro study. Ann Thorac Surg 68:1384–1390

    Article  CAS  PubMed  Google Scholar 

  46. Soerensen DD, Pekkan K, de Zelicourt D, Sharma S, Kanter K, Fogel M, Yoganathan AP (2007) Introduction of a new optimized total cavopulmonary connection. Ann Thorac Surg 83:2182–2190

    Article  PubMed  Google Scholar 

  47. Yang W, Vignon-Clementel IE, Troianowski G, Reddy VM, Feinstein JA, Marsden AL (2012) Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J Thorac Cardiovasc Surg 143:1086–1097

    Article  PubMed  Google Scholar 

  48. Goksel OS, Tireli E, Sungur Z, Harmandar B, Nisli K, Dayioglu E (2007) Use of a bifurcated ePTFE graft for off-pump extracardiac Fontan completion. Thorac Cardiovasc Surg 55:324–325

    Article  CAS  PubMed  Google Scholar 

  49. Kanter KR, Haggerty CM, Restrepo M, de Zelicourt DA, Rossignac J, Parks WJ, Yoganathan AP (2012) Preliminary clinical experience with a bifurcated Y-graft Fontan procedure–a feasibility study. J Thorac Cardiovasc Surg 144:383–389

    Article  PubMed Central  PubMed  Google Scholar 

  50. Haggerty CM, Kanter KR, Restrepo M, de Zelicourt DA, Parks WJ, Rossignac J, Fogel MA, Yoganathan AP (2013) Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections. J Thorac Cardiovasc Surg 145:663–670

    Article  PubMed Central  PubMed  Google Scholar 

  51. Dasi LP, Krishnankuttyrema R, Kitajima HD, Pekkan K, Sundareswaran KS, Fogel M, Sharma S, Whitehead K, Kanter K, Yoganathan AP (2009) Fontan hemodynamics: importance of pulmonary artery diameter. J Thorac Cardiovasc Surg 137:560–564

    Article  PubMed Central  PubMed  Google Scholar 

  52. Marsden AL, Bernstein AJ, Reddy VM, Shadden SC, Spilker RL, Chan FP, Taylor CA, Feinstein JA (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137(394–403):e392

    Google Scholar 

  53. Murakami H, Yoshimura N, Kitahara J, Otaka S, Ichida F, Misaki T (2006) Collision of the caval flows caused early failure of the Fontan circulation. J Thorac Cardiovasc Surg 132:1235–1236

    Article  PubMed  Google Scholar 

  54. Pike NA, Vricella LA, Feinstein JA, Black MD, Reitz BA (2004) Regression of severe pulmonary arteriovenous malformations after Fontan revision and “hepatic factor” rerouting. Ann Thorac Surg 78:697–699

    Article  PubMed  Google Scholar 

  55. Haggerty CM, de Zelicourt DA, Restrepo M, Rossignac J, Spray TL, Kanter KR, Fogel MA, Yoganathan AP (2012) Comparing pre- and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Ann Biomed Eng 40:2639–2651

  56. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA (2007) Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I165–I171

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Slesnick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 166 kb)

Supplementary material 2 (MP4 601 kb)

Supplementary material 3 (MP4 424 kb)

Supplementary material 4 (MP4 333 kb)

Supplementary material 5 (MP4 615 kb)

Supplementary material 6 (MP4 325 kb)

Supplementary material 7 (MP4 362 kb)

Supplementary material 8 (MP4 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slesnick, T.C., Yoganathan, A.P. Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering. Int J Cardiovasc Imaging 30, 1073–1084 (2014). https://doi.org/10.1007/s10554-014-0442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0442-8

Keywords

Navigation