Skip to main content
Log in

Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems

  • original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Objective Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. Methods This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. Results All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm2 and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Conclusion Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Transmit pulse repetition frequency (PRF) sufficiently high to eliminate ambiguity of blood flow direction and velocities (aliasing) when measuring velocities larger than 300 cm/s by exchanging for an ambiguity in the depth because of more than one sample volume.

References

  1. Hatle L, Angelsen BAJ (1985) Doppler ultrasound in cardiology: physical principles and clinical applications. Lea&Febiger, Philadelphia

    Google Scholar 

  2. Singh JP, Evans JC, Levy D, Larson MG, Freed LA, Fuller DL, Lehmann B, Benjamin EJ (1999) Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (The Framingham Heart Study). Am J Cardiol 83:897–902

    Article  PubMed  CAS  Google Scholar 

  3. Iung B, Baron G, Butchart EG, Delahaye F, Gohlke-Barwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, Ravaud P, Vahanian A (2003) A prospective survey of patients with valvular heart disease in Europe: the Euro heart survey on valvular heart disease. Eur Heart J 24:1231–1243

    Article  PubMed  Google Scholar 

  4. Eckberg DL, Gault JH, Bouchard RL, Karliner JS, Ross J Jr (1973) Mechanics of left ventricular contraction in chronic severe mitral regurgitation. Circulation 47:1252–1259

    PubMed  CAS  Google Scholar 

  5. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA, Nihoyannopoulos P, Otto CM, Quinones MA, Rakowski H, Stewart WJ, Waggoner A, Weissman NJ (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16:777–802

    Article  PubMed  Google Scholar 

  6. Quinones MA (1998) Management of mitral regurgitation. Optimal timing for surgery. Cardiol Clin 16:421–435

    Article  PubMed  CAS  Google Scholar 

  7. Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, Scott C, Schaff HV, Tajik AJ (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883

    Article  PubMed  CAS  Google Scholar 

  8. Recusani F, Bargiggia GS, Yoganathan AP, Raisaro A, Valdez-Cruz L, Sung HW, Bertucci C, Gallati M, Moises V, Simpson IA, Tronconi L, Sahn DJ (1991) A new method for quantification of regurgitant flow rate using color flow imaging of the flow convergence region proximal to a discrete orifice: an vitro study. Circulation 83:594–604

    PubMed  CAS  Google Scholar 

  9. Bolger AF, Eigler NL, Maurer G (1988) Quantifying valvular regurgitation: the limitations and inherent assumptions of Doppler techniques. Circulation 87:1316–1318

    Google Scholar 

  10. Utsunomiya T, Ogawa T, Doshi R, Patel D, Quan M, Henry WL, Gardin JM (1991) Doppler color flow “proximal isovelocity surface area”: method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17:1103–1111

    PubMed  CAS  Google Scholar 

  11. Enriquez-Sarano M, Bailey KR, Seward JB, Tajik AJ, Krohn MJ, Mays JM (1993) Quantitative Doppler assessment of valvular regurgitation. Circulation 87:841–848

    PubMed  CAS  Google Scholar 

  12. Blumlein S, Bouchard A, Schiller NB, Dae M, Byrd BF III, Ports T, Botvinick EH (1986) Quantitation of mitral regurgitation by Doppler echocardiography. Circulation 74:306–314

    Google Scholar 

  13. Grayburn PA, Peshock RM (1996) Noninvasive quantification of valvular regurgitation. Circulation 94:119–121

    PubMed  CAS  Google Scholar 

  14. Hottinger CF, Meindl JD (1979) Blood flow measurement using the attenuation compensated volume flowmeter. Ultrason Imaging 1:1–15

    Article  PubMed  CAS  Google Scholar 

  15. Yoganathan AP, Cape EG, Sung HW, Williams FP, Jimoh A (1988) Review of hydrodynamic principles for the cardiologist: applications to the study of blood flow and jets by imaging techniques. J Am Coll Cardiol 12:1344–1353

    PubMed  CAS  Google Scholar 

  16. Buck T, Mucci RA, Guerrero JL, Holmvang G, Handschumacher MD, Levine RA (2000) Flow quantification in valvular heart disease based on the integral of backscattered acoustic power using Doppler ultrasound. Proc IEEE 88:307–330

    Article  Google Scholar 

  17. Buck T, Mucci RA, Guerrero JL, Holmvang G, Handschumacher MD, Levine RA (2000) The power-velocity integral at the vena contracta – a new method for direct quantification of regurgitant volume flow. Circulation 102:1053–1061

    PubMed  CAS  Google Scholar 

  18. Buck T, Plicht B, Hunold P, Mucci RA, Erbel R, Levine RA (2005) Broad-beam spectral Doppler sonification of the vena contracta using matrix-array technology – A new solution for semi-automated quantification of mitral regurgitant flow volume and orifice area. J Am Coll Card 45:770–779

    Article  Google Scholar 

  19. Sugeng L, Weinert L, Thiele K, Lang RM (2003) Real-time three-dimensional echocardiography using a novel matrix array transducer. Echocardiography 20:623–635

    Article  PubMed  Google Scholar 

  20. Angelsen BAJ (1980) A theoretical study of the scattering of ultrasound from blood. IEEE Trans Biomed Eng 27:61–67

    Article  PubMed  CAS  Google Scholar 

  21. Shung KK, Cloutier G, Lim CC (1992) The effects of hematocrit, shear rate, and turbulence on ultrasonic Doppler spectrum from blood. IEEE Trans Biomed Eng 39:462–469

    Article  PubMed  CAS  Google Scholar 

  22. Brody WR, Meindl JD (1974) Theoretical analysis of the CW Doppler ultrasound flowmeter. IEEE Trans Biomed Eng 21:183–192

    Article  PubMed  CAS  Google Scholar 

  23. Looyenga DS, Liebson PR, Bone RC, Balk RA, Messer JV (1989) Determination of cardiac output in critically ill patients by dual beam Doppler echocardiography. J Am Coll Cardiol 13:340–347

    PubMed  CAS  Google Scholar 

  24. Daugherty RL, Franzini JB (1977) Fluid mechanics with engineering applications. McGraw-Hill, New York, NY

    Google Scholar 

  25. Fujita N, Chazouilleres AF, Hartiala JJ, O’Sullivan M, Heidenreich P, Kaplan JD, Sakuma H, Foster E, Caputo GR, Higgins CB (1994) Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 23:951–958

    Article  PubMed  CAS  Google Scholar 

  26. Hundley WG, Li HF, Willard JE, Landau C, Lange RA, Meshack BM, Hillis LD, Peshock RM (1995) Magnetic resonance imaging assessment of the severity of mitral regurgitation: comparison with invasive techniques. Circulation 92:1151–1158

    PubMed  CAS  Google Scholar 

  27. Rokey R, Sterling LL, Zoghbi WA, Sartori MP, Limacher MC, Kuo LC, Quinones MA (1986) Determination of regurgitant fraction in isolated mitral or aortic regurgitation by pulsed Doppler two-dimensional echocardiography. J Am Coll Cardiol 7:1273–1278

    Article  PubMed  CAS  Google Scholar 

  28. Enriquez-Sarano M, Miller FA Jr, Hayes SN, Bailey KR, Tajik AJ, Seward JB (1995) Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 25:703–709

    Article  PubMed  CAS  Google Scholar 

  29. Flachskampf FA, Frieske R, Engelhard B, Grenner H, Frielingsdorf J, Beck F, Reineke T, Thomas JD, Hanrath P (1998) Comparison of transoesophageal Doppler methods with angiography for evaluation of the severity of mitral regurgitation. J Am Soc Echocardiogr 11:882–892

    Article  PubMed  CAS  Google Scholar 

  30. Buck T (2007) Method and device for ultrasound measurement of blood flow. Tracking of blood flow measurement. Patent DE 103.12.883 B4. Date issued 22.02.2007

Download references

Acknowledgements

T. Buck was supported by grants Bu1097/2-1 and Bu 1097/2-2 from the Deutsche Forschungsgemeinschaft, Bonn, Germany. S.M. Hwang was a student of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology in the years 1999 till 2002. The work was supported in part by NIH grants R01 HL38176, HL53702, and K24 HL67434 of the National Institutes of Health, Bethesda, Maryland to R.A. Levine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Buck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, T., Hwang, S.M., Plicht, B. et al. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems. Int J Cardiovasc Imaging 24, 463–477 (2008). https://doi.org/10.1007/s10554-008-9302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9302-8

Keywords

Navigation