Skip to main content

Advertisement

Log in

Understanding racial disparities in renal cell carcinoma incidence: estimates of population attributable risk in two US populations

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Renal cell carcinoma (RCC) incidence is higher among black than white Americans. The reasons for this disparity remain unclear.

Methods

We calculated race- and sex-specific population attributable risk percentages (PAR%) and their 95% confidence intervals (CI) for hypertension and chronic kidney disease (CKD) among black and white subjects ≥  50 years of age from the US Kidney Cancer Study (USKC; 965 cases, 953 controls), a case–control study in Chicago and Detroit, and a nested case–control study in the Kaiser Permanente Northern California health care network (KPNC; 2,162 cases, 21,484 controls). We also estimated PAR% for other modifiable RCC risk factors (cigarette smoking, obesity) in USKC.

Results

In USKC, the PAR% for hypertension was 50% (95% CI 24–77%) and 44% (95% CI 25–64%) among black women and men, respectively, and 29% (95% CI 13–44%) and 27% (95% CI 14–39%) for white women and men, respectively. In KPNC, the hypertension PAR% was 40% (95% CI 18–62%) and 23% (95% CI 2–44%) among black women and men, and 27% (95% CI 20–35%) and 19% (95% CI 14–24%) among white women and men, respectively. The PAR% for CKD in both studies ranged from 7 to 10% for black women and men but was negligible (<1%) for white subjects. In USKC, the PAR% for current smoking was 20% and 8% among black and white men, respectively, and negligible and 8.6% for black and white women, respectively. The obesity PAR% ranged from 12 to 24% across all race/sex strata.

Conclusions

If the associations found are causal, interventions that prevent hypertension and CKD among black Americans could potentially eliminate the racial disparity in RCC incidence (hypothetical black:white RCC incidence ratio of 0.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Cancer Institute. SEER*Explorer. https://seer.cancer.gov/explorer/application.php?site=630&data_type=1&graph_type=2&compareBy=race&chk_sex_1=1&chk_sex_2=2&chk_race_3=3&chk_race_2=2&chk_age_range_1=1&hdn_data_type=1&advopt_precision=1&advopt_display=2&showDataFor=sex_2_and_age_range_1

  2. Chow WH, Shuch B, Linehan WM et al (2013) Racial disparity in renal cell carcinoma patient survival according to demographic and clinical characteristics. Cancer 119(2):388–394. https://doi.org/10.1002/cncr.27690

    Article  PubMed  Google Scholar 

  3. Cutler JA, Sorlie PD, Wolz M et al (2008) Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension 52(5):818–827. https://doi.org/10.1161/HYPERTENSIONAHA.108.113357

    Article  CAS  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention (CDC) (2007) Prevalence of chronic kidney disease and associated risk factors—United States, 1999–2004. MMWR Morb Mortal Wkly Rep 56(8):161–165

    Google Scholar 

  5. Ogden CL, Carroll MD, Curtin LR et al (2006) Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295(13):1549–1555. https://doi.org/10.1001/jama.295.13.1549

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann JN, Schwartz K, Chow WH et al (2013) The association between chronic renal failure and renal cell carcinoma may differ between black and white Americans. Cancer Causes Control 24(1):167–174. https://doi.org/10.1007/s10552-012-0102-z

    Article  PubMed  Google Scholar 

  7. Colt JS, Schwartz K, Graubard BI et al (2011) Hypertension and risk of renal cell carcinoma among White and Black Americans. Epidemiology 22(6):797–804. https://doi.org/10.1097/EDE.0b013e3182300720

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hall EC, Segev DL, Engels EA (2013) Racial/ethnic differences in cancer risk after kidney transplantation. Am J Transpl 13(3):714–720. https://doi.org/10.1111/ajt.12066

    Article  CAS  Google Scholar 

  9. Hofmann JN, Corley DA, Zhao WK et al (2015) Chronic kidney disease and risk of renal cell carcinoma: differences by race. Epidemiology 26(1):59–67. https://doi.org/10.1097/EDE.0000000000000205

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beebe-Dimmer JL, Colt JS, Ruterbusch JJ et al (2012) Body mass index and renal cell cancer: the influence of race and sex. Epidemiology (Cambridge, Mass) 23(6):821–828. https://doi.org/10.1097/EDE.0b013e31826b7fe9

    Article  Google Scholar 

  11. Gago-Dominguez M, Castelao JE (2006) Lipid peroxidation and renal cell carcinoma: further supportive evidence and new mechanistic insights. Free Radic Biol Med 40(4):721–733. https://doi.org/10.1016/j.freeradbiomed.2005.09.026

    Article  CAS  PubMed  Google Scholar 

  12. Bruzzi P, Green SB, Byar DP et al (1985) Estimating the population attributable risk for multiple risk factors using case–control data. Am J Epidemiol 122(5):904–914

    Article  CAS  Google Scholar 

  13. Benichou J, Gail MH (1990) Variance calculations and confidence intervals for estimates of the attributable risk based on logistic models. Biometrics 46(4):991–1003

    Article  CAS  Google Scholar 

  14. Graubard BI, Fears TR (2005) Standard errors for attributable risk for simple and complex sample designs. Biometrics 61(3):847–855. https://doi.org/10.1111/j.1541-0420.2005.00355.x

    Article  PubMed  Google Scholar 

  15. Surveillance E, End Results (SEER) Program (www.seer.cancer.gov). Research data. In: National Cancer Institute D, Surveillance Research Program, ed. based on the November 2016 submission ed, 1973–2014

  16. Setiawan VW, Stram DO, Nomura AM et al (2007) Risk factors for renal cell cancer: the multiethnic cohort. Am J Epidemiol 166(8):932–940. https://doi.org/10.1093/aje/kwm170

    Article  PubMed  Google Scholar 

  17. Benichou J, Chow WH, McLaughlin JK et al (1998) Population attributable risk of renal cell cancer in Minnesota. Am J Epidemiol 148(5):424–430

    Article  CAS  Google Scholar 

  18. Callahan CL, Hofmann JN, Corley DA et al (2018) Obesity and renal cell carcinoma risk by histologic subtype: a nested case–control study and meta-analysis. Cancer Epidemiol 56:31–37. https://doi.org/10.1016/j.canep.2018.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Purdue MP, Moore LE, Merino MJ et al (2013) An investigation of risk factors for renal cell carcinoma by histologic subtype in two case–control studies. Int J Cancer 132(11):2640–2647. https://doi.org/10.1002/ijc.27934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng S, Claggett B, Correia AW et al (2014) Temporal trends in the population attributable risk for cardiovascular disease: the Atherosclerosis Risk in Communities Study. Circulation 130(10):820–828. https://doi.org/10.1161/circulationaha.113.008506

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the US National Cancer Institute (NCI), National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan N. Hofmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callahan, C.L., Schwartz, K., Corley, D.A. et al. Understanding racial disparities in renal cell carcinoma incidence: estimates of population attributable risk in two US populations. Cancer Causes Control 31, 85–93 (2020). https://doi.org/10.1007/s10552-019-01248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-019-01248-1

Keywords

Navigation