Skip to main content

Advertisement

Log in

Identification of genetic and immune signatures for the recurrence of HER2-positive breast cancer after trastuzumab-based treatment

  • Original Laboratory Investigation
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To determine the genetic and immune features associated with the recurrence of human epidermal growth factor receptor2-positive (HER2 +) breast cancer (BC) after trastuzumab-based treatment.

Methods

A retrospective cohort study of 48 patients who received trastuzumab-based treatment was divided into recurrent and non-recurrent groups according to clinical follow-up. Baseline samples from all 48 patients were analyzed for genetic variation, HLA allele type, gene expression, and immune features, which were linked to HER2 + BC recurrence. Statistics included logistic regression models, Kaplan–Meier plots, and Univariate Cox proportional hazards models.

Results

Compared with the non-recurrent group, the extracellular matrix-related pathway and 3 Hallmark gene sets were enriched in the recurrent group. The infiltration levels of immature B cells and activated B cells were significantly increased in the non-recurrent group, which correlated remarkably with improved overall survival (OS) in two other published gene expression datasets, including TCGA and METABRIC. In the TCGA cohort (n = 275), activated B cells (HR 0.23, 95%CI 0.13–0.43, p < 0.0001), and immature B cells (HR 0.26, 95%CI 0.12–0.59, p < 0.0001). In the METABRIC cohort (n = 236), activated B cells (HR 0.60, 95%CI 0.43–0.83, p = 0.002), and immature B cells (HR 0.65, 95%CI 0.47–0.91, p = 0.011). Cox regression suggested that immature B cells and activated B cells were protective factors for outcome OS.

Conclusions

Aberrant activation of multiple pathways and low baseline tumor-infiltrating B cells are related to HER2 + BC trastuzumab-based recurrence, which primarily affects the antitumor activity of trastuzumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

BC:

Breast cancer

HER2 + :

HER2-positive

TILs:

Tumor-infiltrating lymphocytes

FFPE:

Formalin-fixed, paraffin-embedded

SNV:

Single-nucleotide variants

CNAs:

Copy number alterations

ExAC:

Exome Aggregation Consortium

gnomAD:

Genome Aggregation Database

CNV:

Copy number variation

KEGG:

Kyoto encyclopedia of genes and genomes

GO:

Gene ontology

BP:

Biological process,

CC:

Cellular component

MF:

Molecular function

ECM:

Extracellular matrix

OS:

Overall survival

ADCC:

Antibody-dependent cytotoxic cells

IDC:

Invasive ductal carcinoma

FAK1 :

Focal Adhesion Kinase

RTK:

Receptor tyrosine kinases

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Waks AG, Winer EP (2019) Breast cancer treatment: a review. JAMA 321:288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  3. Cataldo A, Piovan C, Plantamura I, D’Ippolito E, Camelliti S, Casalini P, Giussani M, Deas O, Cairo S, Judde JG, Tagliabue E, Iorio MV (2018) MiR-205 as a predictive biomarker and adjuvant therapeutic tool in combination with trastuzumab. Oncotarget 9:27920–27928. https://doi.org/10.18632/oncotarget.24723

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rimawi M, De Angelis C, Contreras A, Pareja F, Geyer F, Burke K, Herrera S, Wang T, Mayer I, Forero A, Nanda R, Goetz M, Chang J, Krop I, Wolff A, Pavlick A, Fuqua S, Gutierrez C, Hilsenbeck S, Li M, Weigelt B, Reis-Filho J, Kent Osborne C, Schiff R (2018) Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res Treat 167:731–740. https://doi.org/10.1007/s10549-017-4533-9

    Article  CAS  PubMed  Google Scholar 

  5. Choi J, Jeon C, Kim Y, Jung S (2020) Pathological complete response to neoadjuvant trastuzumab and pertuzumab therapy is related to human epidermal growth factor receptor 2 (HER2) amplification level in HER2-amplified breast cancer. Medicine 99:e23053. https://doi.org/10.1097/md.0000000000023053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yonemori K, Tsuta K, Shimizu C, Hatanaka Y, Hirakawa A, Ono M, Kouno T, Katsumata N, Ando M, Tamura K, Hasegawa T, Kinoshita T, Fujiwara Y (2010) Immunohistochemical expression of HER1, HER3, and HER4 in HER2-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy. J Surg Oncol 101:222–227. https://doi.org/10.1002/jso.21486

    Article  CAS  PubMed  Google Scholar 

  7. Denkert C, Huober J, Loibl S, Prinzler J, Kronenwett R, Darb-Esfahani S, Brase J, Solbach C, Mehta K, Fasching P, Sinn B, Engels K, Reinisch M, Hansmann M, Tesch H, von Minckwitz G, Untch M (2013) HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer. Breast Cancer Res 15:R11. https://doi.org/10.1186/bcr3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor-infiltrating lymphocytes are prognostic in triple-negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25:1544–1550. https://doi.org/10.1093/annonc/mdu112

    Article  CAS  PubMed  Google Scholar 

  9. Perez E, Thompson E, Ballman K, Anderson S, Asmann Y, Kalari K, Eckel-Passow J, Dueck A, Tenner K, Jen J, Fan J, Geiger X, McCullough A, Chen B, Jenkins R, Sledge G, Winer E, Gralow J, Reinholz M (2015) Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the north central cancer treatment group n9831 adjuvant trastuzumab trial. J Clin Oncol 33:701–708. https://doi.org/10.1200/jco.2014.57.6298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varadan V, Gilmore H, Miskimen K, Tuck D, Parsai S, Awadallah A, Krop I, Winer E, Bossuyt V, Somlo G, Abu-Khalaf M, Fenton M, Sikov W, Harris L (2016) Immune signatures following single dose trastuzumab predict pathologic response to preoperativetrastuzumab and chemotherapy in HER2-positive early breast cancer. Clin Cancer Res 22:3249–3259. https://doi.org/10.1158/1078-0432.ccr-15-2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hou Y, Nitta H, Wei L, Banks P, Parwani A, Li Z (2018) Evaluation of immune reaction and PD-L1 expression using multiplex immunohistochemistry in HER2-positive breast cancer: the association with response to anti-HER2 neoadjuvant therapy. Clin Breast Cancer 18:e237–e244. https://doi.org/10.1016/j.clbc.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Li H (2013) Aligning sequence reads, clone sequences, and assembly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997. https://doi.org/10.48550/arXiv.1303.3997

  13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498. https://doi.org/10.1038/ng.806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, Johnson J, Dougherty B, Barrett JC, Dry JR (2016) VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res 44:e108. https://doi.org/10.1093/nar/gkw227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907. https://doi.org/10.48550/arXiv.1207.3907

  17. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karczewski KJ, Weisburd B, Thomas B, Solomonson M, Ruderfer DM, Kavanagh D, Hamamsy T, Lek M, Samocha KE, Cummings BB, Birnbaum D, The Exome Aggregation C, Daly MJ, MacArthur DG (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45:D840–D845. https://doi.org/10.1093/nar/gkw971

    Article  CAS  PubMed  Google Scholar 

  19. Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12:e1004873

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kawaguchi S, Higasa K, Shimizu M, Yamada R, Matsuda F (2017) HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum Mutat 38:788–797. https://doi.org/10.1002/humu.23230

    Article  CAS  PubMed  Google Scholar 

  21. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  Google Scholar 

  27. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  28. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44. https://doi.org/10.1016/j.cell.2016.02.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G (2005) Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res 304:604–619. https://doi.org/10.1016/j.yexcr.2004.12.008

    Article  CAS  PubMed  Google Scholar 

  30. Maadi H, Nami B, Tong J, Li G, Wang Z (2018) The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2. BMC Cancer 18:238. https://doi.org/10.1186/s12885-018-4143-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo P, Pu T, Chen S, Qiu Y, Zhong X, Zheng H, Chen L, Bu H, Ye F (2017) Breast cancers with EGFR and HER2 co-amplification favor distant metastasis and poor clinical outcome. Oncol Lett 14:6562–6570. https://doi.org/10.3892/ol.2017.7051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng H, Ballman K, Vassilakopoulou M, Dueck AC, Reinholz MM, Tenner K, Gralow J, Hudis C, Davidson NE, Fountzilas G, McCullough AE, Chen B, Psyrri A, Rimm DL, Perez EA (2014) EGFR expression is associated with decreased benefit from trastuzumab in the NCCTG N9831 (Alliance) trial. Br J Cancer 111:1065–1071. https://doi.org/10.1038/bjc.2014.442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Toth G, Szoor A, Simon L, Yarden Y, Szollosi J, Vereb G (2016) The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity. MAbs 8:1361–1370. https://doi.org/10.1080/19420862.2016.1204503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dillon PM, Brenin CM, Slingluff CL Jr (2020) Evaluating Nelipepimut-S in the treatment of breast cancer: a short report on the emerging data. Breast Cancer 12:69–75. https://doi.org/10.2147/bctt.s224758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCarthy P, Clifton G, Vreeland T, Adams A, O’Shea A, Peoples G (2021) AE37: a HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs 30:5–11. https://doi.org/10.1080/13543784.2021.1849140

    Article  CAS  PubMed  Google Scholar 

  36. Gamzatova Z, Villabona L, Dahlgren L, Dalianis T, Nillson B, Bergfeldt K, Masucci GV (2006) Human leucocyte antigen (HLA) A2 as a negative clinical prognostic factor in patients with advanced ovarian cancer. Gynecol Oncol 103:145–150. https://doi.org/10.1016/j.ygyno.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  37. Andersson E, Villabona L, Bergfeldt K, Carlson JW, Ferrone S, Kiessling R, Seliger B, Masucci GV (2012) Correlation of HLA-A02* genotype and HLA class I antigen down-regulation with the prognosis of epithelial ovarian cancer. Cancer Immunol Immunother 61:1243–1253. https://doi.org/10.1007/s00262-012-1201-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Andersson E, Poschke I, Villabona L, Carlson JW, Lundqvist A, Kiessling R, Seliger B, Masucci GV (2016) Non-classical HLA-class I expression in serous ovarian carcinoma: correlation with the HLA-genotype, tumor infiltrating immune cells and prognosis. Oncoimmunology 5:e1052213. https://doi.org/10.1080/2162402X.2015.1052213

    Article  CAS  PubMed  Google Scholar 

  39. Mittendorf EA, Lu B, Melisko M, Price Hiller J, Bondarenko I, Brunt AM, Sergii G, Petrakova K, Peoples GE (2019) Efficacy and safety analysis of Nelipepimut-S vaccine to prevent breast cancer recurrence: a randomized, multicenter, phase III clinical trial. Clin Cancer Res 25:4248–4254. https://doi.org/10.1158/1078-0432.CCR-18-2867

    Article  CAS  PubMed  Google Scholar 

  40. Insua-Rodriguez J, Oskarsson T (2016) The extracellular matrix in breast cancer. Adv Drug Deliv Rev 97:41–55. https://doi.org/10.1016/j.addr.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  41. Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ (2010) HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 122:35–43. https://doi.org/10.1007/s10549-009-0502-2

    Article  CAS  PubMed  Google Scholar 

  42. Jena MK, Janjanam J (2018) Role of extracellular matrix in breast cancer development: a brief update. F1000Res 7:274. https://doi.org/10.12688/f1000research.14133.2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Im J, Fu W, Wang H, Bhatia S, Hammer D, Kowalska M, Muschel R (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619. https://doi.org/10.1158/0008-5472.can-04-2078

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Du J, Wang Y, Jia H (2021) A coagulation-related gene-based prognostic model for invasive ductal carcinoma. Front Genet 12:722992. https://doi.org/10.3389/fgene.2021.722992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sulzmaier FJ, Jean C, Schlaepfer DD (2014) FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 14:598–610. https://doi.org/10.1038/nrc3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martin Schwill RT, Gajadhar Aaron S, Kast Florian, White Forest M, Plückthun Andreas (2019) Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci Signal 12:2875. https://doi.org/10.1126/scisignal.aau2875

    Article  CAS  Google Scholar 

  47. Guarneri V, Frassoldati A, Bottini A, Cagossi K, Bisagni G, Sarti S, Ravaioli A, Cavanna L, Giardina G, Musolino A, Untch M, Orlando L, Artioli F, Boni C, Generali DG, Serra P, Bagnalasta M, Marini L, Piacentini F, D’Amico R, Conte P (2012) Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study. J Clin Oncol 30:1989–1995. https://doi.org/10.1200/JCO.2011.39.0823

    Article  CAS  PubMed  Google Scholar 

  48. de Azambuja E, Holmes AP, Piccart-Gebhart M, Holmes E, Di Cosimo S, Swaby RF, Untch M, Jackisch C, Lang I, Smith I, Boyle F, Xu B, Barrios CH, Perez EA, Azim HA Jr, Kim SB, Kuemmel S, Huang CS, Vuylsteke P, Hsieh RK, Gorbunova V, Eniu A, Dreosti L, Tavartkiladze N, Gelber RD, Eidtmann H, Baselga J (2014) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomized, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15:1137–1146. https://doi.org/10.1016/S1470-2045(14)70320-1

    Article  CAS  PubMed  Google Scholar 

  49. Perez E, Ballman K, Tenner K, Thompson E, Badve S, Bailey H, Baehner F (2016) Association of stromal tumor-infiltrating lymphocytes with recurrence-free survival in the N9831 adjuvant trial in patients with early-stage HER2-positive breast cancer. JAMA Oncol 2:56–64. https://doi.org/10.1001/jamaoncol.2015.3239

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chumsri S, Li Z, Serie D, Norton N, Mashadi-Hossein A, Tenner K, Brauer H, Warren S, Danaher P, Colon-Otero G, Partridge A, Carey L, Hilbers F, Van Dooren V, Holmes E, Di Cosimo S, Werner O, Huober J, Dueck A, Sotiriou C, Saura C, Moreno-Aspitia A, Knutson K, Perez E, Thompson E (2022) Adaptive immune signature in HER2-positive breast cancer in NCCTG (Alliance) N9831 and NeoALTTO trials. NPJ Breast Cancer 8:68. https://doi.org/10.1038/s41523-022-00430-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gu X, Zhang Q, Wu X, Fan Y, Qian J (2021) Gene coexpression network approach to develop an immune prognostic model for pancreatic adenocarcinoma. World J Surg Oncol 19:112. https://doi.org/10.1186/s12957-021-02201-w

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

CX and YW conceived and designed the study. YH and RY supervised and administrated the project. LW, XS, YQ, and ZZ conducted the experiments, and WZ, YY, and WC acquired and analyzed the data. YZ and ZL drafted the manuscript.

Corresponding authors

Correspondence to Yidong Zhou or Zhiyong Liang.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The study was conducted with the approval of the Medical Ethics Committees of the Peking Union Medical College Hospital.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 13069 KB)—Fig. S1 Cluster heatmap of the DEGs in recurrent and non-recurrent HER2+ BC patients

10549_2023_6931_MOESM2_ESM.tif

Supplementary file2 (TIF 10910 KB)—Fig. S2 GSEA of Hallmark gene sets in recurrent and non-recurrent HER2+ BC patients. Significantly enriched signaling pathways were revealed by gene set enrichment analysis. At the top of the plot is the run enrichment score (ES) for the gene set, and the score at the peak (the score furthest from 0.0) represents the ES for the entire gene set. The middle section shows where the members of the genome appear in the sorted list of genes. The bottom portion of the plot shows that the value of the ranking metric decreases as the value of the ranking gene list reduces

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, Y., Hong, Y. et al. Identification of genetic and immune signatures for the recurrence of HER2-positive breast cancer after trastuzumab-based treatment. Breast Cancer Res Treat 199, 603–615 (2023). https://doi.org/10.1007/s10549-023-06931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-023-06931-1

Keywords

Navigation