Skip to main content

Advertisement

Log in

Stabilization of c-Myc by the atypical cell cycle regulator, Spy1, decreases efficacy of breast cancer treatments

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

c-Myc is frequently upregulated in breast cancers, however, targeting c-Myc has proven to be a challenge. Targeting of downstream mediators of c-Myc, such as the ‘cyclin-like’ cell cycle regulator Spy1, may be a viable therapeutic option in a subset of breast cancer subtypes.

Methods

Mouse mammary tumor cells isolated from MMTV-Myc mice and human breast cancer cell lines were used to manipulate Spy1 levels followed by tamoxifen or chemotherapeutic treatment with a variety of endpoints. Patient samples from TNBC patients were obtained and constructed into a TMA and stained for c-Myc and Spy1 protein levels.

Results

Over time, MMTV-Myc cells show a decreased response to tamoxifen treatment with increasing levels of Spy1 in the tamoxifen-resistant cells. shRNA against Spy1 re-establishes tamoxifen sensitivity. Spy1 was found to be highly elevated in human TNBC cell and patient samples, correlating to c-Myc protein levels. c-Myc was found to be stabilized by Spy1 and knocking down Spy1 in TNBC cells shows a significant increase in response to chemotherapy treatments.

Conclusion

Understanding the interplay between protein expression level and response to treatment is a critical factor in developing novel treatment options for breast cancer patients. These data have shown a connection between Spy1 and c-Myc protein levels in more aggressive breast cancer cells and patient samples. Furthermore, targeting c-Myc has proven difficult, these data suggest targeting Spy1 even when c-Myc is elevated can confer an advantage to current chemotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

BL:

Basal-like

BSA:

Bovine serum albumin

CDK:

Cyclin dependent kinase

CHX:

Cyclohexamide

ERα:

Estrogen receptor alpha

Her2/neu:

Human epidermal growth factor receptor 2

IB:

Immunoblotting

IM:

Immunomodulatory

IHC:

Immunohistochemistry

LAR:

Luminal androgen receptor

M:

Mesenchymal

MMTV:

Mouse mammary tumor virus

MSL:

Mesenchymal stem-like

PBS:

Phosphate buffered saline

PR:

Progesterone receptor

Spy1:

Speedy

TMA:

Tissue microarray

TNBC:

Triple negative breast cancer

References

  1. Perou CM (2010) Molecular stratification of triple-negative breast cancers. Oncologist 15(Suppl 5):39–48

    Article  CAS  PubMed  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  3. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12(5):R68

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malhotra GK, Zhao X, Band H, Band V (2010) Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther 10(10):955–960

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lumachi F, Brunello A, Maruzzo M, Basso U, Basso SM (2013) Treatment of estrogen receptor-positive breast cancer. Curr Med Chem 20(5):596–604

    Article  CAS  PubMed  Google Scholar 

  7. Lindström LS, Karlsson E, Wilking UM, Johansson U, Hartman J, Lidbrink EK, Hatschek T, Skoog L, Bergh J (2012) Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 30(21):2601–2608

    Article  PubMed  Google Scholar 

  8. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 61(19):7025–7029

    CAS  PubMed  Google Scholar 

  9. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R (1986) Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 83(13):4834–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kniazev PG, Schafer R, Willecke K, Pluzhnikova GF, Serova OM (1986) Activation of ras and myc proto-oncogenes in human breast carcinoma and neuroblastoma. Mol Biol (Mosk) 20(5):1236–1243

    CAS  Google Scholar 

  11. Kozbor D, Croce CM (1984) Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 44(2):438–441

    CAS  PubMed  Google Scholar 

  12. Persons DL, Borelli KA, Hsu PH (1997) Quantitation of HER-2/neu and c-myc gene amplification in breast carcinoma using fluorescence in situ hybridization. Mod Pathol 10(7):720–727

    CAS  PubMed  Google Scholar 

  13. Xu J, Chen Y, Olopade OI (2010) MYC and breast cancer. Genes Cancer 1(6):629–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peddi PF, Ellis MJ, Ma C (2012) Molecular basis of triple negative breast cancer and implications for therapy. Int J Breast Cancer 2012:217185

    Article  PubMed  Google Scholar 

  15. Kang J, Sergio CM, Sutherland RL, Musgrove EA (2014) Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. BMC Cancer 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bieche I, Laurendeau I, Tozlu S, Olivi M, Vidaud D, Lidereau R, Vidaud M (1999) Quantitation of MYC gene expression in sporadic breast tumors with a real-time reverse transcription-PCR assay. Cancer Res 59(12):2759–2765

    CAS  PubMed  Google Scholar 

  17. Blakely CM, Sintasath L, D’Cruz CM, Hahn KT, Dugan KD, Belka GK, Chodosh LA (2005) Developmental stage determines the effects of MYC in the mammary epithelium. Development 132(5):1147–1160

    Article  CAS  PubMed  Google Scholar 

  18. Liao DJ, Dickson RB (2000) c-Myc in breast cancer. Endocr Relat Cancer 7(3):143–164

    Article  CAS  PubMed  Google Scholar 

  19. Littlewood TD, Evan GI (1990) The role of myc oncogenes in cell growth and differentiation. Adv Dent Res 4:69–79

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 18(19):2988–2996

    Article  CAS  PubMed  Google Scholar 

  21. Alles MC, Gardiner-Garden M, Nott DJ, Wang Y, Foekens JA, Sutherland RL, Musgrove EA, Ormandy CJ (2009) Meta-analysis and gene set enrichment relative to er status reveal elevated activity of MYC and E2F in the “basal” breast cancer subgroup. PLoS One 4(3):e4710

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dadiani M, Seger D, Kreizman T, Badikhi D, Margalit R, Eilam R, Degani H (2009) Estrogen regulation of vascular endothelial growth factor in breast cancer in vitro and in vivo: the role of estrogen receptor alpha and c-Myc. Endocr Relat Cancer 16(3):819–834

    Article  CAS  PubMed  Google Scholar 

  23. Amati B, Land H (1994) Myc-max-mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Opin Genet Dev 4(1):102–108

    Article  CAS  PubMed  Google Scholar 

  24. Amati B, Littlewood TD, Evan GI, Land H (1993) The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 12(13):5083–5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Evan G, Harrington E, Fanidi A, Land H, Amati B, Bennett M (1994) Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci 345(1313):269–275

    Article  CAS  PubMed  Google Scholar 

  26. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69(1):119–128

    Article  CAS  PubMed  Google Scholar 

  27. Soucek L, Jucker R, Panacchia L, Ricordy R, Tato F, Nasi S (2002) Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res 62(12):3507–3510

    CAS  PubMed  Google Scholar 

  28. Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE et al (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209(4):679–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nebreda AR (2006) CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18(2):192–198

    Article  CAS  PubMed  Google Scholar 

  30. Cheng A, Gerry S, Kaldis P, Solomon MJ (2005) Biochemical characterization of Cdk2-speedy/ringo A2. BMC Biochem 6(19):1–17

    CAS  Google Scholar 

  31. McAndrew CW, Gastwirt RF, Meyer AN, Porter LA, Donoghue DJ (2007) Spy1 enhances phosphorylation and degradation of the cell cycle inhibitor p27. Cell Cycle 6(15):1937–1945

    Article  CAS  PubMed  Google Scholar 

  32. McGrath DA, Fifield BA, Marceau AH, Tripathi S, Porter LA, Rubin SM (2017) Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins. EMBO J 36(15):2251–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Al Sorkhy M, Ferraiuolo RM, Jalili E, Malysa A, Fratiloiu AR, Sloane BF, Porter LA (2012) The cyclin-like protein Spy1/RINGO promotes mammary transformation and is elevated in human breast cancer. BMC Cancer 12:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zucchi I, Mento E, Kuznetsov VA, Scotti M, Valsecchi V, Simionati B, Vicinanza E, Valle G, Pilotti S, Reinbold R et al (2004) Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA 101(52):18147–18152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hang Q, Fei M, Hou S, Ni Q, Lu C, Zhang G, Gong P, Guan C, Huang X, He S (2012) Expression of Spy1 protein in human non-Hodgkin’s lymphomas is correlated with phosphorylation of p27 Kip1 on Thr187 and cell proliferation. Med Oncol 29(5):3504–3514

    Article  CAS  PubMed  Google Scholar 

  36. Ke Q, Ji J, Cheng C, Zhang Y, Lu M, Wang Y, Zhang L, Li P, Cui X, Chen L et al (2009) Expression and prognostic role of Spy1 as a novel cell cycle protein in hepatocellular carcinoma. Exp Mol Pathol 87(3):167–172

    Article  CAS  PubMed  Google Scholar 

  37. Lubanska D, Porter LA (2014) The atypical cell cycle regulator Spy1 suppresses differentiation of the neuroblastoma stem cell population. Oncoscience 1(5):336–348

    Article  PubMed  PubMed Central  Google Scholar 

  38. Golipour A, Myers D, Seagroves T, Murphy D, Evan GI, Donoghue DJ, Moorehead RA, Porter LA (2008) The Spy1/RINGO family represents a novel mechanism regulating mammary growth and tumorigenesis. Cancer Res 68(10):3591–3600

    Article  CAS  PubMed  Google Scholar 

  39. Huang Y, Liu Y, Chen Y, Yu X, Yang J, Lu M, Lu Q, Ke Q, Shen A, Yan M (2009) Peripheral nerve lesion induces an up-regulation of Spy1 in rat spinal cord. Cell Mol Neurobiol 29(3):403–411

    Article  PubMed  Google Scholar 

  40. Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ (2002) Human speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol 157(3):357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barnes EA, Porter LA, Lenormand JL, Dellinger RW, Donoghue DJ (2003) Human Spy1 promotes survival of mammalian cells following DNA damage. Cancer Res 63(13):3701–3707

    CAS  PubMed  Google Scholar 

  42. Gastwirt RF, Slavin DA, McAndrew CW, Donoghue DJ (2006) Spy1 expression prevents normal cellular responses to DNA damage: inhibition of apoptosis and checkpoint activation. J Biol Chem 281(46):35425–35435

    Article  CAS  PubMed  Google Scholar 

  43. Hamm CFB, Kay A, Kulkarni S, Gupta R, Mathews J, Ferraiuolo RM, Al-wahsh H, Mailloux E, Hussein A, Porter LA (2022) A prospective phase II clinical trial identifying the optimal regimen for carboplatin plus standard backbone of anthracycline and taxane-based chemotherapy in triple negative breast cancer. Med Oncol 39(49):1–12

    Google Scholar 

  44. Goenka S, Peelukhana SV, Kim J, Stringer KF, Banerjee RK (2013) Dependence of vascular damage on higher frequency components in the rat-tail model. Ind Health 51(4):373–385

    Article  PubMed  Google Scholar 

  45. Matkowskyj KA, Schonfeld D, Benya RV (2000) Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software photoshop and matlab. J Histochem Cytochem 48(2):303–312

    Article  CAS  PubMed  Google Scholar 

  46. Hydbring P, Bahram F, Su Y, Tronnersjo S, Hogstrand K, von der Lehr N, Sharifi HR, Lilischkis R, Hein N, Wu S et al (2010) Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci USA 107(1):58–63

    Article  CAS  PubMed  Google Scholar 

  47. Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6(8):635–645

    Article  CAS  PubMed  Google Scholar 

  48. Amati B (2004) Myc degradation: dancing with ubiquitin ligases. Proc Natl Acad Sci USA 101(24):8843–8844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Amati B, Alevizopoulos K, Vlach J (1998) Myc and the cell cycle. Front Biosci 3:d250-268

    Article  CAS  PubMed  Google Scholar 

  50. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE (2004) The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 101(24):9085–9090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang X, Cunningham M, Zhang X, Tokarz S, Laraway B, Troxell M, Sears RC (2011) Phosphorylation regulates c-Myc’s oncogenic activity in the mammary gland. Cancer Res 71(3):925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chang DW, Claassen GF, Hann SR, Cole MD (2000) The c-Myc transactivation domain is a direct modulator of apoptotic versus proliferative signals. Mol Cell Biol 20(12):4309–4319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamm C, Fifield BA, Kay A, Kulkarni S, Gupta R, Mathews J, Ferraiuolo RM, Al-Wahsh H, Mailloux E, Hussein A et al (2022) A prospective phase II clinical trial identifying the optimal regimen for carboplatin plus standard backbone of anthracycline and taxane-based chemotherapy in triple negative breast cancer. Med Oncol 39(4):49

    Article  CAS  PubMed  Google Scholar 

  55. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ, Davidson NE, Martino S, Livingston R, Ingle JN et al (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of intergroup trial C9741/cancer and leukemia group B trial 9741. J Clin Oncol 21(8):1431–1439

    Article  CAS  PubMed  Google Scholar 

  56. Dolle JM, Daling JR, White E, Brinton LA, Doody DR, Porter PL, Malone KE (2009) Risk factors for triple-negative breast cancer in women under the age of 45 years. Cancer Epidemiol Biomark Prev 18(4):1157–1166

    Article  Google Scholar 

  57. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241

    Article  PubMed  Google Scholar 

  58. Dimitrakakis C, Zhou J, Wang J, Matyakhina L, Mezey E, Wood JX, Wang D, Bondy C (2006) Co-expression of estrogen receptor-alpha and targets of estrogen receptor action in proliferating monkey mammary epithelial cells. Breast Cancer Res 8(1):R10

    Article  PubMed  PubMed Central  Google Scholar 

  59. Musgrove EA, Sergio CM, Anderson LR, Inman CK, McNeil CM, Alles MC, Gardiner-Garden M, Ormandy CJ, Butt AJ, Sutherland RL (2008) Identification of downstream targets of estrogen and c-myc in breast cancer cells. Adv Exp Med Biol 617:445–451

    Article  PubMed  Google Scholar 

  60. Musgrove EA, Sergio CM, Loi S, Inman CK, Anderson LR, Alles MC, Pinese M, Caldon CE, Schutte J, Gardiner-Garden M et al (2008) Identification of functional networks of estrogen- and c-Myc-responsive genes and their relationship to response to tamoxifen therapy in breast cancer. PLoS One 3(8):e2987

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lu SM, Liu R, Su M, Wei YZ, Yang SY, He S, Wang X, Qiang FL, Chen C, Zhao SY et al (2016) Spy1 participates in the proliferation and apoptosis of epithelial ovarian cancer. J Mol Histol 47(1):47–57

    Article  CAS  PubMed  Google Scholar 

  62. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434

    Article  PubMed  Google Scholar 

  63. Gastwirt RF, McAndrew CW, Donoghue DJ (2007) Speedy/RINGO regulation of CDKs in cell cycle, checkpoint activation and apoptosis. Cell Cycle 6(10):1188–1193

    Article  CAS  PubMed  Google Scholar 

  64. Karaiskou A, Perez LH, Ferby I, Ozon R, Jessus C (2001) Nebreda AR Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–36034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Windsor Regional Cancer Centre, pathology department, and Dr. D. Shum for the assistance in acquiring patient tumor samples. We acknowledge and thank the patients of the clinical trial. Biological Materials were provided by the Ontario Tumour Bank, which is funded by the Ontario Institute for Cancer Research.

Funding

R-MF and BF acknowledge scholarship support from the Canadian Breast Cancer Foundation. This work was supported by operating funds from the Canadian Institutes Health Research to L.A.P (Grant#142189).

Author information

Authors and Affiliations

Authors

Contributions

R-MF carried out all of the experiments described herein and aided in the draft of the manuscript. BF aided in the draft of the manuscript and in revisions to the manuscript and data analysis. CH is a valuable collaborator and the principal investigator in the clinic, acquiring patient consent and tissue for the trial. LAP funded the project and had a lead role in study design, interpretation of the data and manuscript preparation. All authors edited the manuscript and provided comments on the intellectual content.

Corresponding author

Correspondence to Lisa A. Porter.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Ethical approval

Approval to receive samples from the Ontario Tumour Bank and Windsor Regional Hospital has been approved by the University of Windsor Research Ethics Board under REB #14-123.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraiuolo, RM., Fifield, BA., Hamm, C. et al. Stabilization of c-Myc by the atypical cell cycle regulator, Spy1, decreases efficacy of breast cancer treatments. Breast Cancer Res Treat 196, 17–30 (2022). https://doi.org/10.1007/s10549-022-06715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06715-z

Keywords

Navigation