Skip to main content

Advertisement

Log in

ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Prior studies have noted that zinc finger E-box binding homeobox 1 (ZEB1) is a master transcription regulator, affecting the expression of nearly 2000 genes in breast cancer cells, especially in the epithelial–mesenchymal transition (EMT) process. We now tested the role of ZEB1 on the oxidative stress of cancer cells and explored its possible mechanisms.

Methods

Two human breast cancer cell lines MDA-MB-231 and MCF7 were selected for the ROS test, PCR, immunofluorescence, Western blot, chromatin immunoprecipitation assay, luciferase assay, and enzyme assay. Mouse models experiments and bioinformatics analysis were conducted to test the indicated molecules.

Results

We observed ZEB1 could inhibit GPX4 transcription by binding to the E-box motifs and promote breast cancer progression by accumulating intracellular ROS. From the perspective of ROS clearance, Vitamin E enhanced GPX4 function to consume L-glutathione and eliminated excess intracellular ROS.

Conclusions

ZEB1 could not only regulate EMT, but also inhibit GPX4 transcription by binding to the E-box motif. It was important to note that the ZEB1/GPX4 axis had a therapeutic effect on breast cancer metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Krebs AM et al (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19:518–529. https://doi.org/10.1038/ncb3513

    Article  CAS  PubMed  Google Scholar 

  2. Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loop–a motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677. https://doi.org/10.1038/embor.2010.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang Y, Wang D, Ren H, Shi Y, Gao Y (2018) Oncogenic HBXIP enhances ZEB1 through Sp1 to accelerate breast cancer growth. Thorac Cancer 9:1664–1670. https://doi.org/10.1111/1759-7714.12878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng S et al (2019) Multi-dimensional roles of ketone bodies in cancer biology: opportunities for cancer therapy. Pharmacol Res 150:104500. https://doi.org/10.1016/j.phrs.2019.104500

    Article  CAS  PubMed  Google Scholar 

  5. Poprac P et al (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38:592–607. https://doi.org/10.1016/j.tips.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  6. Jia M et al (2020) Redox homeostasis maintained by GPX4 facilitates STING activation. Nat Immunol 21:727–735. https://doi.org/10.1038/s41590-020-0699-0

    Article  CAS  PubMed  Google Scholar 

  7. Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp. https://doi.org/10.3791/3357

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee GY, Han SN (2018) The Role of Vitamin E in Immunity. Nutrients. https://doi.org/10.3390/nu10111614

    Article  PubMed  PubMed Central  Google Scholar 

  9. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  Google Scholar 

  10. Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative Stress in Cancer. Cancer Cell 38:167–197. https://doi.org/10.1016/j.ccell.2020.06.001

    Article  CAS  Google Scholar 

  11. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J et al (2017) ZEB1 induces ER-alpha promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death Dis. https://doi.org/10.1038/cddis.2017.154

    Article  PubMed  PubMed Central  Google Scholar 

  13. Diao QX, Zhang JZ, ZHAO T (2016) Vitamin E promotes breast cancer cell proliferation by reducing ROS production and p53 expression. Eur Rev Med Pharmacol Sci 20:2710–2717

    CAS  PubMed  Google Scholar 

  14. Huang C et al (2019) Interaction mechanisms between the NOX4/ROS and RhoA/ROCK1 signaling pathways as new anti- fibrosis targets of ursolic acid in hepatic stellate cells. Front Pharmacol 10:431. https://doi.org/10.3389/fphar.2019.00431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748. https://doi.org/10.1146/annurev-biochem-061516-045037

    Article  CAS  PubMed  Google Scholar 

  16. Jiang L, Shestov AA, Swain P (2016) Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532:7598. https://doi.org/10.1038/nature17393

    Article  CAS  Google Scholar 

  17. Schafer ZT, Grassian AR, Song L (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature. https://doi.org/10.1038/nature08268

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang XF et al (2020) Andrographolide attenuates oxidative stress injury in cigarette smoke extract exposed macrophages through inhibiting SIRT1/ERK signaling. Int Immunopharmacol 81:106230. https://doi.org/10.1016/j.intimp.2020.106230

    Article  CAS  PubMed  Google Scholar 

  19. Aiping J et al (2020) Downregulation of FOXO6 alle via teshypoxia-induced apoptosis and oxidative stress in cardiomyocytes by enhancing Nrf2 activation via upregulation of SIRT6. Journal of Bioenergetics and Biomembranes. https://doi.org/10.1007/s10863-020-09856-2

    Article  Google Scholar 

  20. Yichao X et al (2020) High-fat diet selectively decreases bone marrow lin/CD117+ cell population in aging mice through increased ROS production. J Tissue Eng Regen Med. https://doi.org/10.1002/term.3047

    Article  Google Scholar 

  21. Elisa B, Randi BV et al (2020) The antioxidative role of cytoglobin in podocytes: implications for a role in chronic kidney disease. Antioxidants & redox signaling. https://doi.org/10.1089/ars.2019.7868

    Article  Google Scholar 

  22. Larson-Casey JL et al (2018) Macrophage Rac2Is required to reduce the severity of cigarette smoke–induced pneumonia. Am J Resp Critical Care Med. https://doi.org/10.1164/rccm.201712-2388OC

    Article  Google Scholar 

  23. Jung A, Choi InKyoung L (2013) TIS21/BTG2 inhibits invadopodia formation by down regulating reactive oxygen species level in MDA-MB-231cells. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-013-1484-3

    Article  PubMed  Google Scholar 

  24. Weifeng T et al (2021) TMT-based quantitative proteomics reveals suppression of SLC3A2 and ATP1A3 expression contributes to the inhibitory role of acupuncture on airway inflammation in an OVA-induced mouse asthma model. Biomed Pharmacother 134:111001. https://doi.org/10.1016/j.biopha.2020.111001

    Article  CAS  Google Scholar 

  25. Altieri Dario C (2019). Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-018-2961-2

    Article  PubMed  Google Scholar 

  26. David S, Park Glenn I, Fishman S (2018) CN5A: the greatest HITS collection. J Clin Invest. https://doi.org/10.1172/JCI99927

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. https://doi.org/10.1016/j.redox.2015.09.005

    Article  Google Scholar 

  28. Viswanathan VS et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457. https://doi.org/10.1038/nature23007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goswami CP, Nakshatri H (2014) PROGgeneV2: enhancements on the existing database. BMC Cancer. https://doi.org/10.1186/1471-2407-14-970

  30. Vibet S et al (2008) Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radical Biol Med 44:1483–1491. https://doi.org/10.1016/j.freeradbiomed.2008.01.009

    Article  CAS  Google Scholar 

  31. Goossens S, Vandamme N, Van Vlierberghe P, Berx G (1868) EMT transcription factors in cancer development re-evaluated: beyond EMT and MET. Biochim Biophys Acta Rev Cancer 584–591:2017. https://doi.org/10.1016/j.bbcan.2017.06.006

    Article  CAS  Google Scholar 

  32. Zhang P, Sun Y, Ma L (2015) ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14:481–487. https://doi.org/10.1080/15384101.2015.1006048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Antonio AP, Jennifer JT, Kristen LK (2003) Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 22(10):2453–2462

    Article  Google Scholar 

  34. Madany M, Thomas T, Edwards LA (2018) The Curious Case of ZEB1. Discoveries (Craiova). https://doi.org/10.15190/d.2018.7

    Article  Google Scholar 

  35. Lee SY et al (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16:10. https://doi.org/10.1186/s12943-016-0577-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luanpitpong S et al (1864) Reactive oxygen species mediate cancer stem-like cells and determine bortezomib sensitivity via Mcl-1 and Zeb-1 in mantle cell lymphoma. Biochim Biophys Acta Mol Basis Dis 3739–3753:2018. https://doi.org/10.1016/j.bbadis.2018.09.010

    Article  CAS  Google Scholar 

  37. Hecht F et al (2016) The role of oxidative stress on breast cancer development and therapy. Tumour Biol 37:4281–4291. https://doi.org/10.1007/s13277-016-4873-9

    Article  CAS  PubMed  Google Scholar 

  38. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12:931–947. https://doi.org/10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  39. Forcina GC, Dixon SJ (2019) GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics. https://doi.org/10.1002/pmic.201800311

    Article  PubMed  Google Scholar 

  40. Yang WS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carlson BA et al (2016) Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol 9:22–31. https://doi.org/10.1016/j.redox.2016.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Friedmann Angeli JP et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. https://doi.org/10.1038/ncb3064

    Article  PubMed  Google Scholar 

  43. Mayr L et al (2020) Dietary lipids fuel GPX4-restricted enteritis resembling Crohn’s disease. Nat Commun 11:1775. https://doi.org/10.1038/s41467-020-15646-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bersuker K et al (2019) The CoQ oxidoreductase FSP1 acts in parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Natural Science Foundation of China (No.31770968 and 31800661), the Open Project Program of Key Laboratory for Tumor Precision Medicine of Shaanxi Province (KLTPM-SX2017-A3& KLTPM-SX2018-B1), and the Open Project Program of the Chongqing TCM key Laboratory for Metabolic Disease (Chongqing Medical University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfang Qin or Yue Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 201 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Duan, X., Liu, Z. et al. ZEB1 directly inhibits GPX4 transcription contributing to ROS accumulation in breast cancer cells. Breast Cancer Res Treat 188, 329–342 (2021). https://doi.org/10.1007/s10549-021-06301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06301-9

Keywords

Navigation