Skip to main content

Advertisement

Log in

Immediate tissue expander or implant-based breast reconstruction does not compromise the oncologic delivery of post-mastectomy radiotherapy (PMRT)

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Increasingly, women are choosing immediate breast reconstruction (IBR) following mastectomy. Reports have indicated IBR may compromise post-mastectomy radiotherapy (PMRT). We investigated the impact of IBR on timing of PMRT, target coverage, and doses to organs at risk in a modern radiotherapy practice using advanced planning techniques.

Methods

Between 2013 and 2015, PMRT was delivered to 116 patients (66 mastectomy alone, 50 IBR). PMRT was delivered with a median dose of 50 Gy in 25 fractions. Left-sided patients were treated in breath-hold under image guidance. Differences in dosimetric parameters and time to the initiation of PMRT were assessed between patients with and without reconstruction.

Results

Reconstructed patients were younger and had lower clinical stage disease. Reconstruction did not significantly increase the mean time to PMRT initiation (51 days reconstructed vs. 45 days non-reconstructed, p = 0.14) or the number of patients who initiated PMRT within 12 weeks of the last therapeutic intervention (48/50 [96.0] vs. 61/66 [92.4%], p = 0.41). There was no significant difference in the percentage of patients in whom the internal mammary lymph nodes (IMNs) were targeted (72 vs. 80%, p = 0.29) or in IMN target coverage (mean IMN V40.5 Gy 92.6 vs. 94.1%, p = 0.62). Reconstruction did not significantly affect the mean ipsilateral lung V20 (25.4 vs. 26.4%, p = 0.37) or the mean heart dose (2.2 vs. 2.1 Gy, p = 0.63).

Conclusions

In a specialized breast multidisciplinary practice, immediate breast reconstruction did not significantly delay PMRT, compromise target coverage, or increase dose to organs at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

IBR:

Immediate breast reconstruction

PMRT:

Post-mastectomy radiotherapy

IMNs:

Internal mammary lymph nodes

CTV:

Clinical target volume

RTOG:

Radiation Therapy Oncology Group

DVH:

Dose-volume histogram

PTV:

Planning target volume

ER:

Estrogen receptor

NCIC:

National Cancer Institute of Canada

EORTC:

European Organization for Research and Treatment of Cancer

DBCG:

Danish Breast Cancer Cooperative Group

NSABP:

National Surgical Adjuvant Breast and Bowel Project

References

  1. Budach W et al (2015) Adjuvant radiation therapy of regional lymph nodes in breast cancer—a meta-analysis of randomized trials- an update. Radiat Oncol 10:258

    Article  PubMed  PubMed Central  Google Scholar 

  2. McGale P et al (2014) Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 383(9935):2127–2135

    Article  CAS  PubMed  Google Scholar 

  3. Overgaard M et al (1997) Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N Engl J Med 337(14):949–955

    Article  CAS  PubMed  Google Scholar 

  4. Overgaard M et al (1999) Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 353(9165):1641–1648

    Article  CAS  PubMed  Google Scholar 

  5. Ragaz J et al (2005) Locoregional radiation therapy in patients with high-risk breast cancer receiving adjuvant chemotherapy: 20-year results of the British Columbia randomized trial. J Natl Cancer Inst 97(2):116–126

    Article  PubMed  Google Scholar 

  6. Jagsi R et al (2014) Trends and variation in use of breast reconstruction in patients with breast cancer undergoing mastectomy in the United States. J Clin Oncol 32(9):919–926

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bezuhly M et al (2015) Timing of postmastectomy reconstruction does not impair breast cancer-specific survival: a population-based study. Clin Breast Cancer 15(6):519–526

    Article  PubMed  Google Scholar 

  8. Ho A et al (2012) Long-term outcomes in breast cancer patients undergoing immediate 2-stage expander/implant reconstruction and postmastectomy radiation. Cancer 118(9):2552–2559

    Article  PubMed  Google Scholar 

  9. Hoskin TL et al (2015) Use of immediate breast reconstruction and choice for contralateral prophylactic mastectomy. Surgery 159(4):1199–1209

    Article  PubMed  Google Scholar 

  10. Taghizadeh R et al (2015) Does post-mastectomy radiotherapy affect the outcome and prevalence of complications in immediate DIEP breast reconstruction? A prospective cohort study. J Plast Reconstr Aesthet Surg 68(10):1379–1385

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Zhu C, Gu Y (2015) The prognosis of breast cancer patients after mastectomy and immediate breast reconstruction: a meta-analysis. PLoS ONE 10(5):e0125655

    Article  PubMed  PubMed Central  Google Scholar 

  12. Elder EE et al (2005) Quality of life and patient satisfaction in breast cancer patients after immediate breast reconstruction: a prospective study. Breast 14(3):201–208

    Article  PubMed  Google Scholar 

  13. Pinell-White XA et al (2015) Patient-reported quality of life after breast reconstruction: a one-year longitudinal study using the WHO-QOL survey. Ann Plast Surg 75(2):144–148

    Article  CAS  PubMed  Google Scholar 

  14. Teo I et al (2015) Body image and quality of life of breast cancer patients: influence of timing and stage of breast reconstruction. Psychooncology. doi:10.1002/pon.3952

    Google Scholar 

  15. Froud PJ et al (2000) Effect of time interval between breast-conserving surgery and radiation therapy on ipsilateral breast recurrence. Int J Radiat Oncol Biol Phys 46(2):363–372

    Article  CAS  PubMed  Google Scholar 

  16. Huang J et al (2003) Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J Clin Oncol 21(3):555–563

    Article  PubMed  Google Scholar 

  17. Institute NC NSABP-B51: Standard or comprehensive radiation therapy in treating patients with early-stage breast cancer previously treated with chemotherapy and surgery

  18. Institute NC Alliance 011202: Comparison of axillary lymph node dissection with axillary radiation for patients with node-positive breast cancer treated with chemotherapy

  19. Jagsi R et al (2016) Complications after mastectomy and immediate breast reconstruction for breast cancer: a claims-based analysis. Ann Surg 263(2):219–227

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wright JL et al (2008) Mastectomy with immediate expander-implant reconstruction, adjuvant chemotherapy, and radiation for stage II–III breast cancer: treatment intervals and clinical outcomes. Int J Radiat Oncol Biol Phys 70(1):43–50

    Article  PubMed  Google Scholar 

  21. Momoh AO et al (2014) A systematic review of complications of implant-based breast reconstruction with pre reconstruction and post reconstruction radiotherapy. Ann Surg Oncol 21(1):118–124

    Article  PubMed  Google Scholar 

  22. Motwani SB et al (2006) The impact of immediate breast reconstruction on the technical delivery of postmastectomy radiotherapy. Int J Radiat Oncol Biol Phys 66(1):76–82

    Article  PubMed  Google Scholar 

  23. Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998

    Article  CAS  PubMed  Google Scholar 

  24. Marks LB et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76(3 Suppl):S70–S76

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ohri N et al (2012) Quantifying the impact of immediate reconstruction in postmastectomy radiation: a large, dose-volume histogram-based analysis. Int J Radiat Oncol Biol Phys 84(2):e153–e159

    Article  PubMed  Google Scholar 

  26. Donovan E et al (2007) Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol 82(3):254–264

    Article  PubMed  Google Scholar 

  27. Joo JH et al (2015) Cardiac dose reduction during tangential breast irradiation using deep inspiration breath hold: a dose comparison study based on deformable image registration. Radiat Oncol 10:264

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nielsen MH et al (2013) Delineation of target volumes and organs at risk in adjuvant radiotherapy of early breast cancer: national guidelines and contouring atlas by the Danish Breast Cancer Cooperative Group. Acta Oncol 52(4):703–710

    Article  PubMed  Google Scholar 

  29. Offersen BV et al (2016) ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1. Radiother Oncol 118(1):205–208

    Article  PubMed  Google Scholar 

  30. Poortmans PM et al (2015) Internal mammary and medial supraclavicular irradiation in breast cancer. N Engl J Med 373(4):317–327

    Article  CAS  PubMed  Google Scholar 

  31. Recht A et al (2016) Postmastectomy radiotherapy: an American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Focused Guideline Update. Pract Radiat Oncol 6(6):e219–e234

    Article  PubMed  Google Scholar 

  32. Thorsen LB et al (2016) DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer. J Clin Oncol 34(4):314–320

    Article  PubMed  Google Scholar 

  33. Vikstrom J et al (2011) Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage. Acta Oncol 50(1):42–50

    Article  PubMed  Google Scholar 

  34. Whelan TJ et al (2015) Regional nodal irradiation in early-stage breast cancer. N Engl J Med 373(4):307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. White JTA, Arthur D, Buchholaz T, MacDonald S, Marks L, Pierce L, Recht A, Rabinovitch R, Taghian A, Vicini F, Woodward W, Allen XL (2016) Radiation Therapy oncology group breast cancer contouring Atlas. Available from https://www.rtog.org/CoreLab/ContouringAtlases/BreastCancerAtlas.aspx

  36. Remouchamps VM et al (2003) Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. Int J Radiat Oncol Biol Phys 55(2):392–406

    Article  PubMed  Google Scholar 

  37. Brown LC et al (2015) Delineation of supraclavicular target volumes in breast cancer radiation therapy. Int J Radiat Oncol Biol Phys 92(3):642–649

    Article  PubMed  Google Scholar 

  38. Dijkema IM et al (2004) Loco-regional conformal radiotherapy of the breast: delineation of the regional lymph node clinical target volumes in treatment position. Radiother Oncol 71(3):287–295

    Article  PubMed  Google Scholar 

  39. Ho AY et al (2014) Bilateral implant reconstruction does not affect the quality of postmastectomy radiation therapy. Med Dosim 39(1):18–22

    Article  PubMed  Google Scholar 

  40. Jethwa KR et al (2017) Delineation of internal mammary nodal target volumes in breast cancer radiotherapy. Int J Radiat Oncol Biol Phys 97(4):762–769

    Article  PubMed  Google Scholar 

  41. Taylor CW et al (2015) Exposure of the heart in breast cancer radiation therapy: a systematic review of heart doses published during 2003–2013. Int J Radiat Oncol Biol Phys 93(4):845–853

    Article  PubMed  Google Scholar 

  42. Lind PA et al (2006) ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer. Int J Radiat Oncol Biol Phys 64(3):765–770

    Article  PubMed  Google Scholar 

  43. Mutter RW et al (2016) Initial clinical experience of postmastectomy intensity modulated proton therapy in patients with breast expanders with metallic ports. Pract Radiat Oncol. doi:10.1016/j.prro.2016.12.002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Mutter.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Krishan R. Jethwa and Mohamed M. Kahila have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jethwa, K.R., Kahila, M.M., Whitaker, T.J. et al. Immediate tissue expander or implant-based breast reconstruction does not compromise the oncologic delivery of post-mastectomy radiotherapy (PMRT). Breast Cancer Res Treat 164, 237–244 (2017). https://doi.org/10.1007/s10549-017-4241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4241-5

Keywords

Navigation