Skip to main content

Advertisement

Log in

Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families: implications for genetic screening of Greenlandic Inuit families with high risk for breast and/or ovarian cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We have recently identified a Greenlandic Inuit BRCA1 nucleotide 234T>G/c.115T>G (p.Cys39Gly) founder mutation, which at that time was the only disease-causing BRCA1/BRCA2 mutation identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in another Greenlandic individual with ovarian cancer. This patient share a 1–2 Mb genomic fragment, containing the BRCA1 gene, with four Danish families harbouring the same mutation, suggesting that the 249T>A/c.130T>A (p.Cys44Ser) mutation originates from a Danish ancestor. We conclude that screening of Greenlandic Inuits with high risk of breast or ovarian cancer should include sequencing of the entire BRCA1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Thompson D, Easton D (2004) The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia 9(3):221–236

    Article  PubMed  Google Scholar 

  2. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7(2):263–272

    Article  CAS  PubMed  Google Scholar 

  3. Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC (2001) Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7(2):273–282

    Article  CAS  PubMed  Google Scholar 

  4. Shin S, Verma IM (2003) BRCA2 cooperates with histone acetyltransferases in androgen receptor-mediated transcription. Proc Natl Acad Sci USA 100(12):7201–7206

    Article  CAS  PubMed  Google Scholar 

  5. Marmorstein LY, Kinev AV, Chan GK, Bochar DA, Beniya H, Epstein JA, Yen TJ, Shiekhattar R (2001) A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104(2):247–257

    Article  CAS  PubMed  Google Scholar 

  6. Morris JR, Pangon L, Boutell C, Katagiri T, Keep NH, Solomon E (2006) Genetic analysis of BRCA1 ubiquitin ligase activity and its relationship to breast cancer susceptibility. Hum Mol Genet 15(4):599–606

    Article  CAS  PubMed  Google Scholar 

  7. Roa BB, Boyd AA, Volcik K, Richards CS (1996) Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet 14(2):185–187

    Article  CAS  PubMed  Google Scholar 

  8. Struewing JP, Abeliovich D, Peretz T, Avishai N, Kaback MM, Collins FS, Brody LC (1995) The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet 11(2):198–200

    Article  CAS  PubMed  Google Scholar 

  9. Thorlacius S, Olafsdottir G, Tryggvadottir L, Neuhausen S, Jonasson JG, Tavtigian SV, Tulinius H, Ogmundsdottir HM, Eyfjord JE (1996) A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nat Genet 13(1):117–119

    Article  CAS  PubMed  Google Scholar 

  10. Thorlacius S, Sigurdsson S, Bjarnadottir H, Olafsdottir G, Jonasson JG, Tryggvadottir L, Tulinius H, Eyfjord JE (1997) Study of a single BRCA2 mutation with high carrier frequency in a small population. Am J Hum Genet 60(5):1079–1084

    CAS  PubMed  Google Scholar 

  11. Hansen TO, Jonson L, Albrechtsen A, Andersen MK, Ejlertsen B, Nielsen FC (2009) Large BRCA1 and BRCA2 genomic rearrangements in Danish high risk breast-ovarian cancer families. Breast Cancer Res Treat 115(2):315–323

    Article  CAS  PubMed  Google Scholar 

  12. Hansen TV, Bisgaard ML, Jonson L, Albrechtsen A, Filtenborg-Barnkob B, Eiberg H, Ejlertsen B, Nielsen FC (2008) Novel de novo BRCA2 mutation in a patient with a family history of breast cancer. BMC Med Genet 9:58

    Article  PubMed  Google Scholar 

  13. Hansen TV, Steffensen AY, Jonson L, Andersen MK, Ejlertsen B, Nielsen FC (2010) The silent mutation nucleotide 744 G→A, Lys172Lys, in exon 6 of BRCA2 results in exon skipping. Breast Cancer Res Treat 119(3):547–550

    Article  CAS  PubMed  Google Scholar 

  14. Soegaard M, Kjaer SK, Cox M, Wozniak E, Hogdall E, Hogdall C, Blaakaer J, Jacobs IJ, Gayther SA, Ramus SJ (2008) BRCA1 and BRCA2 mutation prevalence and clinical characteristics of a population-based series of ovarian cancer cases from Denmark. Clin Cancer Res 14(12):3761–3767

    Article  CAS  PubMed  Google Scholar 

  15. Thomassen M, Hansen TV, Borg A, Lianee HT, Wikman F, Pedersen IS, Bisgaard ML, Nielsen FC, Kruse TA, Gerdes AM (2008) BRCA1 and BRCA2 mutations in Danish families with hereditary breast and/or ovarian cancer. Acta Oncol 47(4):772–777

    Article  CAS  PubMed  Google Scholar 

  16. Hansen TV, Ejlertsen B, Albrechtsen A, Bergsten E, Bjerregaard P, Hansen T, Myrhoj T, Nielsen PB, Timmermans-Wielenga V, Andersen MK et al (2009) A common Greenlandic Inuit BRCA1 RING domain founder mutation. Breast Cancer Res Treat 115(1):69–76

    Article  CAS  PubMed  Google Scholar 

  17. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  18. Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P (2001) Prediction of deleterious human alleles. Hum Mol Genet 10(6):591–597

    Article  CAS  PubMed  Google Scholar 

  19. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M (2005) PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 21(14):3176–3178

    Article  CAS  PubMed  Google Scholar 

  20. Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T, Nielsen FC, Nielsen R (2009) Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet Epidemiol 33(3):266–274

    Article  PubMed  Google Scholar 

  21. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G et al (2002) A high-resolution recombination map of the human genome. Nat Genet 31(3):241–247

    CAS  PubMed  Google Scholar 

  22. Glover JN (2006) Insights into the molecular basis of human hereditary breast cancer from studies of the BRCA1 BRCT domain. Fam Cancer 5(1):89–93

    Article  CAS  PubMed  Google Scholar 

  23. Wu LC, Wang ZW, Tsan JT, Spillman MA, Phung A, Xu XL, Yang MC, Hwang LY, Bowcock AM, Baer R (1996) Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14(4):430–440

    Article  CAS  PubMed  Google Scholar 

  24. Jensen DE, Proctor M, Marquis ST, Gardner HP, Ha SI, Chodosh LA, Ishov AM, Tommerup N, Vissing H, Sekido Y et al (1998) BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16(9):1097–1112

    Article  CAS  PubMed  Google Scholar 

  25. Brzovic PS, Meza JE, King MC, Klevit RE (2001) BRCA1 RING domain cancer-predisposing mutations. Structural consequences and effects on protein-protein interactions. J Biol Chem 276(44):41399–41406

    Article  CAS  PubMed  Google Scholar 

  26. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE (2001) Structure of a BRCA1-BARD1 heterodimeric RING–RING complex. Nat Struct Biol 8(10):833–837

    Article  CAS  PubMed  Google Scholar 

  27. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D 3rd, Fukuda M, Ohta T, Klevit R (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci USA 100(10):5646–5651

    Article  CAS  PubMed  Google Scholar 

  28. Xia Y, Pao GM, Chen HW, Verma IM, Hunter T (2003) Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem 278(7):5255–5263

    Article  CAS  PubMed  Google Scholar 

  29. Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin A, Tavtigian SV (2004) Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41(7):492–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Berit Bak Jensen, Christina Berantzino, Jesper Andreasen, Jesper Johansson, Karina Nørgaard, Lis Krüger and Nina Ilsøe are thanked for BRCA1/BRCA2 screening of breast and/or ovarian cancer patients. The study was supported by the Neye Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas v. O. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T.v.O., Jønson, L., Albrechtsen, A. et al. Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families: implications for genetic screening of Greenlandic Inuit families with high risk for breast and/or ovarian cancer. Breast Cancer Res Treat 124, 259–264 (2010). https://doi.org/10.1007/s10549-010-0909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0909-9

Keywords

Navigation