Skip to main content

Advertisement

Log in

Surveying germline genomic landscape of breast cancer

  • Letter to the editor
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The recent large genotyping studies have identified a new repertoire of breast cancer susceptibility genes and loci which are characterized by common risk alleles and low relative risks. Because of these properties, these loci explain a much larger proportion of the etiology of the particular cancers, described by the population attributable fraction (PAF), than of their familial risks. PAF is particularly suitable for ‘genomic landscaping’ because it defines the proportion of breast cancer explained by the variant under study. The joint PAF for the previously described high-penetrance alleles is about 1%, for moderate-penetrance alleles it is 1.5% and for low-penetrance susceptibility alleles it is 58%. The evidence appears compelling in pointing to the remarkably high population impacts of the recently described heritable loci compared to the ‘classical’ high-penetrance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  PubMed  CAS  Google Scholar 

  2. Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40:17–22

    Article  PubMed  CAS  Google Scholar 

  3. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MW, Pooley KA et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358

    Article  PubMed  CAS  Google Scholar 

  4. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093

    Article  PubMed  CAS  Google Scholar 

  5. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA et al (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39:865–869

    Article  PubMed  CAS  Google Scholar 

  6. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874

    Article  PubMed  CAS  Google Scholar 

  7. Hemminki K, Försti A, Bermejo JL (2008) Etiologic impact of known cancer susceptibility genes. Mut Res Rev 658:42–54

    CAS  Google Scholar 

  8. Hemminki K, Försti A, Bermejo JL (2008) Estimating risks of common complex diseases: familial and population risks. J Med Genet 45(2):126–127

    Article  PubMed  CAS  Google Scholar 

  9. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637

    Article  PubMed  CAS  Google Scholar 

  10. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645–649

    Article  PubMed  CAS  Google Scholar 

  11. Hemminki K, Bermejo JL (2007) Constraints for genetic association studies imposed by attributable fraction and familial risk. Carcinogenesis 28:648–656

    Article  PubMed  CAS  Google Scholar 

  12. Cybulski C, Gorski B, Huzarski T, Masojc B, Mierzejewski M, Debniak T et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135

    Article  PubMed  CAS  Google Scholar 

  13. Erkko H, Xia B, Nikkila J, Schleutker J, Syrjakoski K, Mannermaa A et al (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446:316–319

    Article  PubMed  CAS  Google Scholar 

  14. Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M et al (2006) ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38:873–875

    Article  PubMed  CAS  Google Scholar 

  15. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241

    Article  PubMed  CAS  Google Scholar 

  16. Am J Hum Genet (2004) TheCHEK2BreastCancerCase-ControlConsortium. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies Am J Hum Genet 74:1175–1182

  17. Houlston RS, Peto J (2003) The future of association studies of common cancers. Hum Genet 112:434–435

    PubMed  Google Scholar 

  18. Hemminki K, Bermejo JL, Försti A (2006) The balance between heritable and environmental aetiology of human disease. Nat Rev Genet 7:958–965

    Article  PubMed  CAS  Google Scholar 

  19. Johnson N, Fletcher O, Palles C, Rudd M, Webb E, Sellick G et al (2007) Counting potentially functional variants in BRCA1, BRCA2 and ATM predicts breast cancer susceptibility. Hum Mol Genet 16:1051–1057

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Deutsche Krebshilfe, the BMBF for NGNF+, the Swedish Cancer Society, the Swedish Council for Working Life and Social Research, the EU, LSHC-LT-2004-503465 and EU Food-CT-2005-016320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Hemminki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemminki, K., Försti, A. & Lorenzo Bermejo, J. Surveying germline genomic landscape of breast cancer. Breast Cancer Res Treat 113, 601–603 (2009). https://doi.org/10.1007/s10549-008-9946-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-9946-z

Keywords

Navigation