Skip to main content

Advertisement

Log in

Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

Genistein and apigenin are phytoestrogens present in commercial preparations used for the treatment of postmenopausal symptoms. In this study, we assessed the influence of these compounds on mammary tumor growth. Both compounds stimulate the proliferation of MCF-7 and T47D cells [estrogen receptor alpha (ERα-positive)], but do not stimulate the proliferation of an ERα-negative cell line (MDA-MB-435 cells). Genistein appeared more efficient in this regard due to its higher binding affinity for ERα, a property explained by a structural analysis of the binding of these compounds to the ERα’s ligand binding domain. As previously described for estradiol (E2), genistein and apigenin down regulated ERα and enhanced estrogen response element (ERE)-dependent gene expression. The additional finding that genistein antagonizes the anti-proliferative effect of hydroxytamoxifen suggests phytoestrogens may be detrimental in women with breast cancer who are being treated with tamoxifen. In addition, because of their ability to stimulate breast cell growth, the widespread use of phytoestrogens in postmenopausal women could be detrimental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brzezinski A, Debi A. Phytoestrogens: the natural selective estrogen receptor modulators? Eur J Obstet Gynecol Reprod Biol 85:47–51, 1999

    Article  PubMed  CAS  Google Scholar 

  2. Maggiolini M, Bonofiglio D, Marsico S, Panno ML, Cenni B, Picard D, Ando S. Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytostrogens on human breast cancer cells Mol Pharmacol 60:595–602, 2001

    PubMed  CAS  Google Scholar 

  3. Albertazzi P, Purdie D. The nature and utility of the phytoestrogens: a review of the evidence Maturitas 42:173–185, 2002

    Article  PubMed  CAS  Google Scholar 

  4. Benassayag C, Perrot-Applanat M, Ferre F. Phytoestrogens as modulators of steroid action in target cells J Chromatogr B Analyt Technol Biomed Life Sci 777:233–248, 2002

    Article  PubMed  CAS  Google Scholar 

  5. Jacquot Y, Refouvelet B, Robert JF, Leclercq G, Xicluna A. Recent advances in the development of phytoestrogens and derivatives; an update of the promising perspectives in the prevention of postmenopausal diseases Mini Rev Med Chem 3:387–400, 2003

    Article  PubMed  CAS  Google Scholar 

  6. Pettersson K, Gustafsson JA. Role of estrogen receptor beta in estrogen action Annu Rev Physiol 63:165–192, 2001

    Article  PubMed  CAS  Google Scholar 

  7. Adlercreutz H. Phytoestrogens and cancer Lancet Oncol 3:364–373, 2002

    Article  PubMed  Google Scholar 

  8. Adlercreutz H. Phytoestrogens: epidemiology and a possible role in cancer protection Environ Health Perspect 103(7 Suppl):103–112, 1995

    Article  PubMed  CAS  Google Scholar 

  9. Adlercreutz H, Mazur W. Phytoestrogens and Western diseases Ann Med 29:95–120, 1997

    PubMed  CAS  Google Scholar 

  10. Adlercreutz H. 1998 Human health and phytoestrogens. In: Korach KS, (Eds) Reproductive and Developmental Toxicology. Marcel Dekker Inc., New York, 299–371

    Google Scholar 

  11. Adlercreutz H. Evolution, nutrition, intestinal microflora, and prevention of cancer: a hypothesis Proc Soc Exp Biol Med 217:241–246, 1998

    PubMed  CAS  Google Scholar 

  12. Kurzer MS, Xu X. Dietary phytoestrogens Annu Rev Nutr 17:353–381, 1997

    Article  PubMed  CAS  Google Scholar 

  13. Adlercreutz H, Fotsis T, Heikkinen R, Dwyer JT, Woods M, Goldin BR, Gorbach SL. Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer Lancet2:1295–1299, 1982

    Article  PubMed  CAS  Google Scholar 

  14. Adlercreutz H, Fotsis T, Bannwart C, Wahala K, Makela T, Brunow G, Hase T. Determination of urinary lignans and phytoestrogen metabolites, potential anti-estrogens and anti-carcinogens, in urine of women on various habitual diets J Steroid Biochem25:791–797, 1986

    Article  PubMed  CAS  Google Scholar 

  15. Adlercreutz H, Fotsis T, Hockerstedt K, Hamalainen E, Bannwart C, Bloigu S, Valtonen A, Ollus A. Diet and urinary estrogen profile in premenopausal omnivorous and vegetarian women and in premenopausal women with breast cancer J Steroid Biochem34:527–530, 1989

    Article  PubMed  CAS  Google Scholar 

  16. Adlercreutz H, Honjo H, Higashi A, Fotsis T, Hamalainen E, Hasegawa T, Okada H. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet Am J Clin Nutr 54:1093–1100, 1991

    PubMed  CAS  Google Scholar 

  17. Peterson G, Barnes S. Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene Biochem Biophys Res Commun 179:661–667, 1991

    Article  PubMed  CAS  Google Scholar 

  18. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L. Genistein, a dietary-derived inhibitor of in vivo angiogenesis Proc Natl Acad Sci USA 90:2690–2694, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Fotsis T, Pepper MS, Montesano R, Aktas E, Breit S, Schweigerer L, Rasku S, Wahala K, Adlercreutz H. Phytoestrogens and inhibition of angiogenesis Baillieres Clin Endocrinol Metab 12:649–666, 1998

    Article  PubMed  CAS  Google Scholar 

  20. Wiseman H. The therapeutic potential of phytoestrogens Expert Opin Investig Drugs 9:1829–1840, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Barnes S, The chemopreventive properties of soy isoflavonoids in animal models of breast cancer Breast Cancer Res Treat 46:169–179, 1997

    Article  PubMed  CAS  Google Scholar 

  22. Lamartiniere CA, Zhang JX, Cotroneo MS. Genistein studies in rats: potential for breast cancer prevention and reproductive and developmental toxicity Am J Clin Nutr 68(6 Suppl):1400S–1405S, 1998

    PubMed  CAS  Google Scholar 

  23. Sarkar FH, Li Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein Cancer Metastasis Rev 21:265–280, 2002

    Article  PubMed  CAS  Google Scholar 

  24. Hsieh CY, Santell RC, Haslam SZ, Helferich WG. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo Cancer Res 58:3833–3838, 1998

    PubMed  CAS  Google Scholar 

  25. Allred CD, Allred KF, Ju YH, Virant SM, Helferich WG. Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner Cancer Res 61:5045–5050, 2001

    PubMed  CAS  Google Scholar 

  26. Ju YH, Allred CD, Allred KF, Karko KL, Doerge DR, Helferich WG. Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice J Nutr 131:2957–2962, 2001

    PubMed  CAS  Google Scholar 

  27. Pons M, Gagne D, Nicolas JC, Mehtali M. A new cellular model of response to estrogens: a bioluminescent test to characterize (anti) estrogen molecules Biotechniques 9:450–459, 1990

    PubMed  CAS  Google Scholar 

  28. Seo HS, Larsimont D, Querton G, El Khissiin A, Laïos I, Legros N, Leclercq G. Estrogenic and anti-estrogenic regulation of estrogen receptor in MCF-7 breast-cancer cells: comparison of immunocytochemical data with biochemical measurements Int J Cancer 78:760–765, 1998

    Article  PubMed  CAS  Google Scholar 

  29. Seo HS, Larsimont D, Ma Y, Laïos I, Leclercq G. Regulation of estrogen receptor levels by ligand-induced release of compound(s) in MCF-7 cells Mol Cell Endocrinol 164:19–29, 2000

    Article  PubMed  CAS  Google Scholar 

  30. Olea-Serrano N, Devleeschouwer N, Leclercq G, Heuson JC. Assay for estrogen and progesterone receptors of breast cancer cell lines in monolayer culture Eur J Cancer Clin Oncol 21:965–973, 1985

    Article  PubMed  CAS  Google Scholar 

  31. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor Nature 389:753–758, 1997

    Article  PubMed  CAS  Google Scholar 

  32. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen Cell 95:927–937, 1998

    Article  PubMed  CAS  Google Scholar 

  33. DeLisle RK, Yu SJ, Nair AC, Welsh WJ. Homology modeling of the estrogen receptor subtype beta (ER-beta) and calculation of ligand binding affinities J Mol Graph Model 20:155–167, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Pike AC, Brzozowski AM, Walton J, Hubbard RE, Bonn T, Gustafsson JA, Carlquist M. Structural aspects of agonism and antagonism in the oestrogen receptor Biochem Soc Trans 28:396–400, 2000

    Article  PubMed  CAS  Google Scholar 

  35. Aliau S, Mattras H, Richard E, Bonnafous JC, Borgna JL. Differential interactions of estrogens and anti-estrogens at the 17β-hydroxyl or counterpart hydroxyl with histidine 524 of the human estrogen receptor alpha Biochemistry 41:7979–7988, 2002

    Article  PubMed  CAS  Google Scholar 

  36. Alarid ET, Bakopoulos N, Solodin N. Proteasome-mediated proteolysis of estrogen receptor: a novel component in autologous down regulation Mol Endocrinol 13:1522–1534, 1999

    Article  PubMed  CAS  Google Scholar 

  37. El Khissiin A, Leclercq G. Implication of proteasome in estrogen receptor degradation FEBS Lett 448:160–166, 1999

    Article  PubMed  CAS  Google Scholar 

  38. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW. Proteasome-dependent degradation of the human estrogen receptor Proc Natl Acad Sci USA 96:1858–1862, 1999

    Article  PubMed  CAS  Google Scholar 

  39. Saceda M, Lippman ME, Chambon P, Lindsey RL, Ponglikitmongkol M, Puente M, Martin MB. Regulation of the estrogen receptor in MCF-7 cells by estradiol Mol Endocrinol 2:1157–1162, 1988

    PubMed  CAS  Google Scholar 

  40. Read LD, Greene GL, Katzenellenbogen BS. Regulation of estrogen receptor messenger ribonucleic acid and protein levels in human breast cancer cell lines by sex steroid hormones, their antagonists, and growth factors Mol Endocrinol 3:295–304, 1989

    PubMed  CAS  Google Scholar 

  41. Jin L, Borras M, Lacroix M, Legros N, Leclercq G. Anti-estrogenic activity of two 11 beta-estradiol derivatives on MCF-7 breast cancer cells Steroids 60:512–518, 1995

    Article  PubMed  CAS  Google Scholar 

  42. Leclercq G, Legros N, Piccart MJ. Accumulation of a non-binding form of estrogen receptor in MCF-7 cells under hydroxytamoxifen treatment J Steroid Biochem Mol Biol 41:545–552, 1992

    Article  PubMed  CAS  Google Scholar 

  43. Laïos I, Journé F, Laurent G, Nonclercq D, Toillon RA, Seo H-S, Leclercq G. Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related anti-estrogens J Steroid Biochem Mol Biol 87:207–221, 2003

    Article  PubMed  CAS  Google Scholar 

  44. Laïos I, Journé F, Nonclercq D, Salazar Vidal D, Toillon RA, Laurent G, Leclercq G. Role of the proteasome in the regulation of estrogen receptor a turnover and function in MCF-7 breast carcinoma cells J Steroid Biochem Mol Biol 94:347–359, 2005

    Article  PubMed  CAS  Google Scholar 

  45. Bylund A, Zhang JX, Bergh A, Damber JE, Widmark A, Johansson A, Adlercreutz H, Aman P, Shepherd MJ, Hallmans G. Rye bran and soy protein delay growth and increase apoptosis of human LNCaP prostate adenocarcinoma in nude mice Prostate 42:304–314, 2000

    Article  PubMed  CAS  Google Scholar 

  46. Davies MJ, Bowey EA, Adlercreutz H, Rowland IR, Rumsby PC. Effects of soy or rye supplementation of high-fat diets on colon tumour development in azoxymethane-treated rats Carcinogenesis 20:927–931, 1999

    Article  PubMed  CAS  Google Scholar 

  47. Ishimi Y, Miyaura C, Ohmura M, Onoe Y, Sato T, Uchiyama Y, Ito M, Wang X, Suda T, Ikegami S. Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency Endocrinology 140:1893–1900, 1999

    Article  PubMed  CAS  Google Scholar 

  48. Scheiber MD, Liu JH, Subbiah MT, Rebar RW, Setchell KD, Dietary inclusion of whole soy foods results in significant reductions in clinical risk factors for osteoporosis and cardiovascular disease in normal postmenopausal women Menopause 8:384–392, 2001

    Article  PubMed  CAS  Google Scholar 

  49. Zaho L, Chen Q, Diaz Brinton R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons Exp Biol Med (Maywood) 227:509–519, 2002

    Google Scholar 

  50. Lissin LW, Cooke JP. Phytoestrogens and cardiovascular health J Am Coll Cardiol 35:1403–1410, 2000

    Article  PubMed  CAS  Google Scholar 

  51. Liu J, Burdette JE, Xu H, Gu C, Van Breemen RB, Bhat KP, Booth N, Constantinou AI, Pezzuto JM, Fong HH, Farnsworth NR, Bolton JL. Evaluation of estrogenic activity of +-plant extracts for the potential treatment of menopausal symptoms J Agric Food Chem 49:2472–2479, 2001

    Article  PubMed  CAS  Google Scholar 

  52. Jones JL, Daley BJ, Enderson BL, Zhou JR, Karlstad MD. Genistein inhibits tamoxifen effects on cell proliferation and cell cycle arrest in T47D breast cancer cells Am Surg 68:575–578, 2002

    PubMed  Google Scholar 

  53. Ju YH, Doerge DR, Allred KF, Allred CD, Helferich WG. Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice Cancer Res 62:2474–2477, 2002

    PubMed  CAS  Google Scholar 

  54. Fioravanti L, Cappelletti V, Miodini P, Ronchi E, Brivio M, Di Fronzo G. Genistein in the control of breast cancer cell growth: insights into the mechanism of action in vitro Cancer Lett 130:143–152, 1998

    Article  PubMed  CAS  Google Scholar 

  55. Diel P, Olff S, Schmidt S, Michna H. Molecular identification of potential selective estrogen receptor modulator (SERM) like properties of phytoestrogens in the human breast cancer cell line MCF-7 Planta Med 67:510–514, 2001

    Article  PubMed  CAS  Google Scholar 

  56. Akiyama T, Ishida J, Nakagawa H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases J Biol Chem 262:5592–5595, 1987

    PubMed  CAS  Google Scholar 

  57. Messina M, Barnes S, Setchell KD. Phytoestrogens and breast cancer Lancet 350:971–972, 1997

    Article  PubMed  CAS  Google Scholar 

  58. Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II Cancer Res 49:5111–5117, 1989

    PubMed  CAS  Google Scholar 

  59. Hansen RK, Oesterreich S, Lemieuw P, Sarge KD, Fuqua SAW. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells Biochem Biophys Res Commun 239:851–856, 1997

    Article  PubMed  CAS  Google Scholar 

  60. Pagliacci MC, Smacchia M, Migliorati G, Grignani F, Riccardi C, Nicoletti I. Growth-inhibitory effects of the natural phytoestrogen genistein in MCF-7 human breast cancer cells. Eur J Cancer 30A:1675–1682, 1994

    Article  PubMed  CAS  Google Scholar 

  61. Shao ZM, Alpaugh ML, Fontana JA, Barsky SH. Genistein inhibits proliferation similarly in estrogen receptor-positive and negative human breast carcinoma cell lines characterized by P21WAF1/CIP1 induction, G2/M arrest, and apoptosis J Cell Biochem 69:44–54, 1998

    Article  PubMed  CAS  Google Scholar 

  62. Li Y, Bhuiyan M, Sarkar FH. Induction of apoptosis and inhibition of c-erbB-2 in MDA-MB-435 cells by genistein Int J Oncol 15:525–533, 1999

    PubMed  CAS  Google Scholar 

  63. Hu Y, Dragowska WH, Wallis A, Duronio V, Mayer L. Cytotoxicity induced by manipulation of signal transduction pathways is associated with down regulation of Bcl-2 but not Mcl-1 in MCF-7 human breast cancer Breast Cancer Res Treat 70:11–20, 2001

    Article  PubMed  CAS  Google Scholar 

  64. Morton MS, Wilcox G, Wahlqvist ML, Griffiths K. Determination of lignans and isoflavonoids in human female plasma following dietary supplementation J Endocrinol 142:251–259, 1994

    Article  PubMed  CAS  Google Scholar 

  65. Barnes S. Effect of genistein on in vitro and in vivo models of cancer J Nutr 125(3 Suppl):777S–783S, 1995

    PubMed  CAS  Google Scholar 

  66. Albertazzi P, Pansini F, Bottazzi M, Bonaccorsi G, De Aloysio D, Morton MS. Dietary soy supplementation and phytoestrogen levels Obstet Gynecol 94:229–231, 1999

    Article  PubMed  CAS  Google Scholar 

  67. Pike AC, Brzozowski AM, Hubbard RE. A structural biologist’s view of the oestrogen receptor J Steroid Biochem Mol Biol 74:261–268, 2000

    Article  PubMed  CAS  Google Scholar 

  68. Ju YH, Carlson KE, Sun J, Pathak D, Katzenellenbogen BS, Katzenellenbogen JA, Helferich WG. Estrogenic effects of extracts from cabbage, fermented cabbage, and acidified Brussels sprouts on growth and gene expression of estrogen-dependent human breast cancer (MCF-7) cells J Agric Food Chem 48:4628–4634, 2000

    Article  PubMed  CAS  Google Scholar 

  69. Dhingra K. Selective estrogen receptor modulation: the search for an ideal hormonal therapy for breast cancer Cancer Invest 19:649–659, 2001

    Article  PubMed  CAS  Google Scholar 

  70. Ratna WN. Inhibition of estrogenic stimulation of gene expression by genistein Life Sci 71:865–877, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr D. Larsimont (Service d’Anatomie Pathologique, Institut Jules Bordet, Brussels, Belgium) for the interpretation of immunocytochemical data. We are thankful to Dr Heidi Weiss (Breast Center, Baylor College of Medicine) for the statistical analysis and to Shirley Pennington for her assistance in preparing the manuscript. This work was supported by R01 CA78480, R01 CA101211 (PHB, Baylor College of Medicine), a DOD fellowship (DGD, Baylor College of Medicine), and the MEDIC Foundation (Institut Jules Bordet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Powel H. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, HS., DeNardo, D.G., Jacquot, Y. et al. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer Res Treat 99, 121–134 (2006). https://doi.org/10.1007/s10549-006-9191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9191-2

Keywords

Navigation