Skip to main content
Log in

Motor Cortex Activity During Functional Motor Skills: An fNIRS Study

Brain Topography Aims and scope Submit manuscript

Abstract

Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Kollias SS (2002) Reproducibility of primary motor cortex somatotopy under controlled conditions. Am J Neuroradiol 23(9):1524–1532

    PubMed  Google Scholar 

  • Boroojerdi B, Foltys H, Krings T, Spetzger U, Thron A, Töpper R. (1999) Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin Neurophysiol 110(4):699–704

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Khan B, Hervey N, Tian F, Delgado MR, Clegg NJ, Smith L, Roberts H, Tulchin-Francis K, Shierk A, Shagman L, MacFarlane D, Liu H, Alexandrakis G (2015) Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy. J Biomed Opt 20(4):046009. doi:10.1117/1.JBO.20.4.046009

    Article  PubMed  Google Scholar 

  • Chance B, Anday E, Nioka S, Zhou S, Hong L, Worden K, Li C, Murray T, Ovetsky Y, Pidikiti D, Thomas R (1998) A novel method for fast imaging of brain function, non-invasively, with light. Opt Express 2(10):411–423

    Article  PubMed  CAS  Google Scholar 

  • Cope M, Delpy DT, Reynolds EO, Wray S, Wyatt J, Van der Zee P (1988) Methods of quantitating cerebral near infrared spectroscopy data. In: Mochizuki M, Honig CR, Koyama T, Goldstick TK, Bruley DF (eds) Oxygen Transport to Tissue X, Springer, US, p 183–189

    Chapter  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2014) Cortical activity in precision-versus power-grip tasks: an fMRI study. J Neurophysiol 83(1):528–536

    Google Scholar 

  • Ferrari M, Bisconti S, Spezialetti M, Basso Moro S, Di Palo C, Placidi G, Quaresima V (2014) Prefrontal cortex activated bilaterally by a tilt board balance task: a functional near-infrared spectroscopy study in a semi-immersive virtual reality environment. Brain Topogr 27(3):353–365. doi:10.1007/s10548-013-0320-z

    Article  PubMed  Google Scholar 

  • Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. NeuroImage 37(4):1315–1328

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidler J, Hodics T, Xu B, Dobkin BH, Cohen LG (2006) MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing. J Neurosci Methods 155(2):300–307. doi:10.1016/j.jneumeth.2006.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Huppert TJ, Diamond SG, Franceschini MA, Boas DA (2009) HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl Opt 48(10):D280–D298

    Article  PubMed  PubMed Central  Google Scholar 

  • Huppert TJ, Schmidt B, Beluk N, Furman J, Sparto P (2013) Measurement of brain activation during an upright stepping reaction task using functional near-infrared spectroscopy. Hum Brain Mapp 34(11):2817–2828. doi:10.1002/hbm.22106

    Article  PubMed  Google Scholar 

  • Ikegami T, Taga G (2008) Decrease in cortical activation during learning of a multi-joint discrete motor task. Exp Brain Res 191(2):221–236. doi:10.1007/s00221-008-1518-2

    Article  PubMed  Google Scholar 

  • Indovina I, Sanes JN (2001) On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. NeuroImage 13(6):1027–1034. doi:10.1006/nimg.2001.0776

    Article  PubMed  CAS  Google Scholar 

  • Jasper H (1958) The ten-twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  • Karim H, Schmidt B, Dart D, Beluk N, Huppert TJ (2012) Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture 35(3):367–372. doi:10.1016/j.gaitpost.2011.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Karim H, Fuhrman SI, Sparto P, Furman J, Huppert TJ (2013) Functional brain imaging of multi-sensory vestibular processing during computerized dynamic posturography using near-infrared spectroscopy. NeuroImage 74:318–325. doi:10.1016/j.neuroimage.2013.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenraadt KLM, Duysens J, Smeenk M, Keijsers NLW (2012) Multi-channel NIRS of the primary motor cortex to discriminate hand from foot activity. J Neural Eng 9(4):046010. doi:10.1088/1741-2560/9/4/046010

    Article  PubMed  CAS  Google Scholar 

  • Koenraadt KLM, Duysens J, Meddeler B, Keijsers NLW (2013) Hand tapping at mixed frequencies requires more motor cortex activity compared to single frequencies: an fNIRS study. Exp Brain Res 231(2):231–237. doi:10.1007/s00221-013-3686-y

    Article  PubMed  Google Scholar 

  • Koenraadt KLM, Roelofsen E, Duysens J, Keijsers NLW (2014) Cortical control of normal gait and precision stepping: an fNIRS study. NeuroImage 85(Pt 1):415–422. doi:10.1016/j.neuroimage.2013.04.070

    Article  PubMed  Google Scholar 

  • Kurz MJ, Wilson TW, Arpin DJ (2012) Stride-time variability and sensorimotor cortical activation during walking. NeuroImage 59(2):1602–1607. doi:10.1016/j.neuroimage.2011.08.084

    Article  PubMed  Google Scholar 

  • Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. NeuroImage 11(5):473–481. doi:10.1006/nimg.2000.0556

    Article  PubMed  CAS  Google Scholar 

  • Molavi B, Dumont GA (2012) Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiol Meas 33(2):259–270. doi:10.1088/0967-3334/33/2/259

    Article  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400–409. doi:10.1002/ana.10848

    Article  PubMed  Google Scholar 

  • Murayama N, Lin YY, Salenius S, Hari R (2001) Oscillatory interaction between human motor cortex and trunk muscles during isometric contraction. NeuroImage 14(5):1206–1213. doi:10.1006/nimg.2001.0907

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Oda I, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 21(1):99–111. doi:10.1016/j.neuroimage.2003.08.026

    Article  PubMed  Google Scholar 

  • Singh AK, Dan I (2006) Exploring the false discovery rate in multichannel NIRS. NeuroImage 33(2):542–549. doi:10.1016/j.neuroimage.2006.06.047

    Article  PubMed  Google Scholar 

  • Solodkin A, Hlustik P, Noll DC, Small SL (2001) Lateralization of motor circuits and handedness during finger movements. Eur J Neurol 8(5):425–434

    Article  PubMed  CAS  Google Scholar 

  • Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H (2006) Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 24(4):495–505. doi:10.1016/j.mri.2005.12.034

    Article  PubMed  Google Scholar 

  • Tian F, Delgado MR, Dhamne SC, Khan B, Alexandrakis G, Romero MI, Smith L, Reid D, Clegg NJ, Liu H (2010) Quantification of functional near infrared spectroscopy to assess cortical reorganization in children with cerebral palsy. Opt Express 18(25):25973–25986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsuzuki D, Jurcak V, Singh AK, Okamoto M, Watanabe E, Dan I (2007) Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage 34(4):1506–1518. doi:10.1016/j.neuroimage.2006.10.043

    Article  PubMed  Google Scholar 

  • Vidal AC, Banca P, Pascoal AG, Cordeiro G, Sargento-Freitas J, Castelo-Branco M (2014) Modulation of cortical interhemispheric interactions by motor facilitation or restraint. Neural Plast. doi:10.1155/2014/210396

    PubMed  PubMed Central  Google Scholar 

  • Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20(10):435–442

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Mcshane LM, Hallett M, Cohen LG (1992) Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM, Nuova M (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518(3):895–906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Center for Human Growth and Development (CHGD) and the Rackham Graduate School at the University of Michigan. We would like to express our sincere gratitude to Dr. Sean K. Meehan for his support and feedback on this project and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Nishiyori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyori, R., Bisconti, S. & Ulrich, B. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study. Brain Topogr 29, 42–55 (2016). https://doi.org/10.1007/s10548-015-0443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-015-0443-5

Keywords

Navigation