Skip to main content
Log in

Turbulence Scale Dependence of the Richardson Constant in Lagrangian Stochastic Models

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the relative dispersion properties of the well-mixed class of Lagrangian stochastic models. Dimensional analysis shows that, given a model in the class, its properties depend solely on a non-dimensional parameter, which measures the relative weight of Lagrangian-to-Eulerian scales. This parameter is formulated in terms of Kolmogorov constants, and model properties are then studied by modifying its value in a range that contains the experimental variability. Large variations are found for the quantity, g* = 2gC − 10 , where g is the Richardson constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • D. Anfossi G. Degrazia E. Ferrero S. E. Gryning M. G. Morselli S. T. Castelli (2000) ArticleTitle‘Estimation of the Lagrangian Structure Function Constant C0 from Surface-Layer Wind Data’ Boundary-Layer Meteorol 95 249–270 Occurrence Handle10.1023/A:1002697221093

    Article  Google Scholar 

  • G.K. Batchelor (1952) ArticleTitle‘Diffusion in a Field of Homogeneous Turbulence II. The Relative Motion of Particles’ Proc. Cambridge Philos. Soc. 48 345–362

    Google Scholar 

  • G.K. Batchelor (1953) The Theory of Homogeneous Turbulence Cambridge University Press U.K. 197

    Google Scholar 

  • G. Boffetta A. Celani A. Crisanti A. Vulpiani (1999) ArticleTitle‘Pair Dispersion in Synthetic fully Developed Turbulence’ Phys. Rev. E. 60 6734–6741 Occurrence Handle10.1103/PhysRevE.60.6734

    Article  Google Scholar 

  • M. S. Borgas B. L. Sawford (1991) ArticleTitle‘The Small-Scale Structure of Acceleration Correlations and its Role in the Statistical Theory of Turbulent Dispersion’ J. Fluid Mech. 228 295–320

    Google Scholar 

  • M. S. Borgas B. L. Sawford (1994) ArticleTitle‘A Family of Stochastic Models for Two-particle Dispersion in Isotropic Homogeneous Stationary Turbulence’ J. Fluid Mech. 279 69–99

    Google Scholar 

  • S. Corrsin (1963) ArticleTitle‘Estimates of the Relations between Eulerian and Lagrangian Scales in Large Reynolds Number Turbulence’ J. Atmos. Sci. 20 115–119 Occurrence Handle10.1175/1520-0469(1963)020<0115:EOTRBE>2.0.CO;2

    Article  Google Scholar 

  • P. A. Durbin (1980) ArticleTitle‘A Stochastic Model for Two-particle Dispersion and Concentration Fluctuations in Homogeneous Turbulence’ J. Fluid Mech. 100 279–302

    Google Scholar 

  • Gardiner, C. W.: 1990, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 2nd ed., Springer-Verlag, 442 pp.

  • F. A. Gifford (1984) ArticleTitle‘The Random Force Theory: Application to Meso- and Large-scale Atmospheric Diffusion’ Boundary-Layer Meteorol. 30 159–175 Occurrence Handle10.1007/BF00121953

    Article  Google Scholar 

  • S. Hanna (1981) ArticleTitle‘Lagrangian and Eulerian Time-scale Relations in the Daytime Boundary Layer’ J. Appl. Meteorol. 20 242–249 Occurrence Handle10.1175/1520-0450(1981)020<0242:LAETSR>2.0.CO;2

    Article  Google Scholar 

  • J. O. Hinze (1959) Turbulence McGraw-Hill New York 586

    Google Scholar 

  • K. Koeltzsch (1999) ArticleTitle‘On the Relationship between the Lagrangian and Eulerian Time Scale’ Atmos. Environ. 33 117–128

    Google Scholar 

  • A. N. Kolmogorov (1941) ArticleTitleThe Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers’ Dokl. Akad. Nauk SSSR. 30 301

    Google Scholar 

  • O.A. Kurbanmuradov (1997) ArticleTitle‘Stochastic Lagrangian Models for Two-particle Relative Dispersion in High-Reynolds Number Turbulence Monte Carlo Methods Appl. 3 37–52

    Google Scholar 

  • A. S. Monin A. M. Yaglom (1975) Statistical Fluid Mechanics, Vol.II MIT Press Cambridge 874

    Google Scholar 

  • N. Mordant P. Metz O. Michel J.-F. Pinton (2001) ArticleTitle‘Measurement of Lagrangian Velocity in Fully Developed Turbulence’ Phys. Rev. Letters 87 214501/1–214501/4 Occurrence Handle10.1103/PhysRevLett.87.214501

    Article  Google Scholar 

  • E. A. Novikov (1963) ArticleTitle‘Random Force Method in Turbulence Theory’ Sov. Phys. JETP. 17 1449–1454

    Google Scholar 

  • S. Ott J. Mann (2000) ArticleTitle‘An Experimental Investigation of the Relative Diffusion of Particle Pairs in Three-dimensional Turbulent Flow’ J. Fluid Mech. 422 207–223 Occurrence Handle10.1017/S0022112000001658

    Article  Google Scholar 

  • A.L. Porta G. A. Voth A. M. Crawford J. Alexander E. Bodenschatz (2001) ArticleTitle‘Fluid Particle Acceleration in Fully Developed Turbulence’ Nature (London) 409 1017–1019

    Google Scholar 

  • C. Renner J. Peinke R. Friedrich (2001) ArticleTitle‘Experimental Indications for Markov Properties of Small-Scale Turbulence’ J. Fluid Mech. 433 383–409

    Google Scholar 

  • A. M. Reynolds (1999) ArticleTitle‘The Relative Dispersion of Particle Pairs in Stationary Homogeneous Turbulence’ J. Appl. Meteorol. 38 1384–1390 Occurrence Handle10.1175/1520-0450(1999)038<1384:TRDOPP>2.0.CO;2

    Article  Google Scholar 

  • L. F. Richardson (1926) ArticleTitle‘Atmospheric Diffusion Shown on a Distance-neighbor Graph’ Proc. R. Soc. London Ser. A. 110 709–737

    Google Scholar 

  • Y. Sato K. Yamamoto (1987) ArticleTitle‘Lagrangian Measurementes of Fluid-particle Motion in an Isotropic Turbulent Field’ J. Fluid Mech. 175 183–199

    Google Scholar 

  • B. L. Sawford (1999) ArticleTitle‘Rotation of Trajectories in Lagrangian Stochastic Models of Turbulent Dispersion’ Boundary-Layer Meteorol. 93 411–424 Occurrence Handle10.1023/A:1002114132715

    Article  Google Scholar 

  • B. L. Sawford (2001) ArticleTitle‘Turbulent Relative Dispersion’ Ann. Rev. Fluid Mech. 33 289–317 Occurrence Handle10.1146/annurev.fluid.33.1.289

    Article  Google Scholar 

  • S. Schwere A. Stohl M. W. Rotach (2002) ArticleTitle‘Practical Considerations to Speed up Lagrangian Stochastic Particle Models’ Computer Geosci. 28 43–154

    Google Scholar 

  • K. R. Sreenivasan (1995) ArticleTitle‘On the Universality of the Kolmogorov Constant’ Phys. of Fluids. 7 2778–2784 Occurrence Handle10.1063/1.868656

    Article  Google Scholar 

  • G. I. Taylor (1921) ArticleTitle‘Diffusion by Continuous Movements’ Proc. London Math. Soc. 20 196–211

    Google Scholar 

  • Tennekes, H.: 1982, ‘Similarity Relations, Scaling Laws and Spectral Dynamics’, in F. T. M. Nieuwstadt and H. van Dop (eds), Atmospheric Turbulence and air Pollution Modeling, Reidel, pp. 37–68.

  • D. J. Thomson (1987) ArticleTitle‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’ J. Fluid Mech. 180 529–556

    Google Scholar 

  • D. J. Thomson (1990) ArticleTitle‘A stochastic Model for the Motion of Particle Pairs in Isotropic High–Reynolds-number Turbulence, and its Application to the Problem of Concentration Variance’ J. Fluid Mech. 210 113–153

    Google Scholar 

  • van Kampen, N. G.: 1981, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 419 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maurizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurizi, A., Pagnini, G. & Tampieri, F. Turbulence Scale Dependence of the Richardson Constant in Lagrangian Stochastic Models. Boundary-Layer Meteorol 118, 55–68 (2006). https://doi.org/10.1007/s10546-005-5293-3

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-5293-3

Keywords

Navigation