Skip to main content
Log in

Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this work, an optimized, non-invasive four electrode-based impedimetric sensors have been designed, fabricated, and characterized for measuring the impedance of a biological cell. The impedimetric sensors having four mono-polar electrodes were fabricated utilizing the photolithography technique with gold as the electrode material. Furthermore, the impedance of the electrolyte/electrode interface was simulated by optimizing different parameters, including applied voltage, PBS thickness, and diameter, using COMSOL Multiphysics software for a frequency range of 100 Hz to 1 MHz. Next, the impedance of the fabricated device was measured experimentally using the electrochemical impedance spectroscopy (EIS) technique. Then, the COMSOL data was equated with the impedance obtained from the fabricated devices to realize the feasibility and error percentage (RSE < 5%) of the sensor. The equivalent circuit model for the measured impedance data of PBS was obtained utilizing the ZsimpWin software. Besides, the mathematical relations between the impedance, phase angle and the area of the electrode were interpreted for the fabricated impedimetric sensors. Later on, a real blood sample was also characterized to demonstrate the feasibility and the validity of the proposed technique and the fabricated devices in cell diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

(NA)

References

  • W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng. 52, 1295–1302 (2005)

    Article  Google Scholar 

  • T.M. Curtis, M.W. Widder, L.M. Brennan, S.J. Schwager, W.H. van der Schalie, J. Fey, N. Salazar, A portable cell-based impedance sensor for toxicity testing of drinking water. Lab Chip 9, 2176–2183 (2009)

    Article  Google Scholar 

  • S. Kumar, Ashish, S. Kumar, S. Augustine, S. Yadav, B.K. Yadav, R.P. Chauhan, A.K. Dewan, B.D. Malhotra, Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor. Biosens. Bioelectron 102, 247–255 2018/04/15/ (2018a)

  • J. Hong, K. Kandasamy, M. Marimuthu, C.S. Choi, S. Kim, Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst 136, 237–245 (2011)

    Article  Google Scholar 

  • O. Láng, L. Kőhidai, J. Wegener, Label-free profiling of cell dynamics: A sequence of impedance-based assays to estimate tumor cell invasiveness in vitro. Experiment Cell Res 359, 243–250, 2017/10/01/ (2017)

    Article  Google Scholar 

  • R. Pradhan, S. Rajput, M. Mandal, A. Mitra, and S. Das, Electric cell–substrate impedance sensing technique to monitor cellular behaviours of cancer cells. RSC Adv 4, 9432–9438 (2014a)

  • A. Kalkal, R. Pradhan, S. Kadian, G. Manik, G. Packirisamy, Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer. ACS Appl Bio Mater 3, 4922–4932, 2020/08/17 (2020)

    Article  Google Scholar 

  • C. Xiao, B. Lachance, G. Sunahara, J.H.T. Luong, An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal. Chem. 74, 1333–1339 (2002)

    Article  Google Scholar 

  • L. Wang, L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo, J. Cheng, Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip. Biosens Bioelectron 25, 990–995, 2010/01/15/ (2010)

    Article  Google Scholar 

  • R. Pradhan, M. Mandal, A. Mitra, S. Das, Monitoring cellular activities of cancer cells using impedance sensing devices. Sens Actuators B Chem 193, 478–483 (2014b)

  • X. Huang, D. W. Greve, D. D. Nguyen, and M. M. Domach, Impedance Based Biosensor Array for Monitoring Mammalian Cell Behavior, in Proceedings of IEEE Sensors, 304–309 (2003)

  • I. Giaever, C.R. Keese, A morphological biosensor for mammalian cells. Nature 366, 591–592, 1993/12/01 (1993)

    Article  Google Scholar 

  • R. Pradhan, M. Mandal, A. Mitra, and S. Das, Assessing cytotoxic effect of ZD6474 on MDA-MB-468 cells using cell-based sensor. IEEE Sens J 14, 1476–1481 (2014c)

  • Y. An, T. Jin, F. Zhang, P. He, Electric cell-substrate impedance sensing (ECIS) for profiling cytotoxicity of cigarette smoke. J Electroanal Chem 834, 180–186, 2019/02/01/ (2019)

    Article  Google Scholar 

  • R. Pradhan, S. Rajput, M. Mandal, A. Mitra, S. Das,  Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell. Biosens Bioelectron 55, 44–50 (2014d) 

  • R. Szulcek, H. J. Bogaard, and G. P. J. J. van Nieuw Amerongen, Electric cell-substrate impedance sensing for the quantification of endothelial proliferation, barrier function, and motility, e51300, (2014)

  • K. Benson, S. Cramer, H.-J. J. F. Galla, and B. o. t. CNS, Impedance-based cell monitoring: barrier properties and beyond 10, 5, (2013)

  • T. Schmiedinger, S. Partel, T. Lechleitner, O. Eiter, D. Hekl, S. Kaseman, P. Lukas, J. Edlinger, J. Lechner, T. Seppi, Interdigitated aluminium and titanium sensors for assessing epithelial barrier functionality by electric cell-substrate impedance spectroscopy (ECIS). Biomed Microdev 22, 30, 2020/04/24 (2020)

    Article  Google Scholar 

  • F. Cavallini, M. Tarantola, ECIS based wounding and reorganization of cardiomyocytes and fibroblasts in co-cultures. Prog Biophys Mol Biol 144, 116–127, 2019/07/01/ (2019)

    Article  Google Scholar 

  • I. Giaever, C.R. Keese, Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc. Natl. Acad. Sci. 81, 3761 (1984)

    Article  Google Scholar 

  • I. Giaever, C.R. Keese, Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. 88, 7896–7900 (1991)

    Article  Google Scholar 

  • I. Giaever and C. R. Keese, Attachment and spreading of mammalian cells in vitro, in Soft Condensed Matter: Configurations, Dynamics and Functionality, ed: Springer, pp. 101–109 (2000)

  • V. Raicu, A. Popescu, Cell Membrane: Structure and Physical Properties,  in Integrated Molecular and Cellular Biophysics, Springer, pp. 73–99 (2008)

  • B.-Y. Chang, S.-M. Park, Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3, 207–229 (2010)

  • N. Hu, J. Zhou, K. Su, D. Zhang, L. Xiao, T. Wang, P. Wang, An integrated label-free cell-based biosensor for simultaneously monitoring of cellular physiology multiparameter in vitro. Biomed Microdev 15, 473–480, 2013/06/01 (2013)

    Article  Google Scholar 

  • J.J. Ackmann, Complex bioelectric impedance measurement system for the frequency range from 5 Hz to 1 MHz. Annals of Biomedical Engineering 21, 135–146, 1993/03/01 (1993)

    Article  Google Scholar 

  • S. Kumar, S. Kumar, S. Augustine, S. Yadav, B. K. Yadav, R. P. Chauhan, A. K. Dewan, B. D. J. B. Malhotra, and bioelectronics, "Effect of Brownian motion on reduced agglomeration of nanostructured metal oxide towards development of efficient cancer biosensor," 102, 247–255, (2018b)

  • R. Pradhan, A. Mitra, and S. Das, Impedimetric characterization of human blood using three-electrode based ECIS devices. J Electr Bioimpedance 3, pp. 12–19 (2019)

  • M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy: John Wiley & Sons, (2017)

  • G. J. Brom-Verheijden, M. H. Goedbloed, and M. A. Zevenbergen, A Microfabricated 4-Electrode Conductivity Sensor with Enhanced Range, in Multidisciplinary Digital Publishing Institute Proceedings, 797 (2018)

  • D.-H. Xia, S. Song, Y. Behnamian, W. Hu, Y.F. Cheng, J.-L. Luo, F. Huet, Review—Electrochemical Noise Applied in Corrosion Science: Theoretical and Mathematical Models towards Quantitative Analysis. J Electrochem Soc 167, 081507, 2020/05/05 (2020)

    Article  Google Scholar 

  • T.H. Park, M.L. Shuler, Integration of Cell Culture and Microfabrication Technology. Biotechnol Prog 19, 243–253, 2003/01/01 (2003)

    Article  Google Scholar 

  • R. Pradhan, A. Mitra, S. Das, Characterization of Electrode/Electrolyte Interface of ECIS Devices. Electroanal 24, 2405–2414, 2012/12/01 (2012)

    Article  Google Scholar 

  • V. Srinivasaraghavan, J. Strobl, D. Wang, J.R. Heflin, M. Agah, A comparative study of nano-scale coatings on gold electrodes for bioimpedance studies of breast cancer cells. Biomed Microdev 16, 689–696, 2014/10/01 (2014)

    Article  Google Scholar 

  • Y.-T. Lai, Y.-S. Chu, J.-C. Lo, Y.-H. Hung, C.-M. Lo, Effects of electrode diameter on the detection sensitivity and frequency characteristics of electric cell-substrate impedance sensing. Sens Actuators B: Chem 288, 707–715, 2019/06/01/ (2019)

    Article  Google Scholar 

  • J. Huang, Y. Zhang, J. Wu, Review of non-invasive continuous glucose monitoring based on impedance spectroscopy. Sens Actuators A: Phys 311, 112103, 2020/08/15/ (2020)

    Article  Google Scholar 

  • D. Ianni Filho, I. d. F. S. F. Boin, A. Yamanaka, Bioimpedance: New Approach to Non-Invasive Detection of Liver Fibrosis - a Pilot Study. J Arquivos de Gastroenterologia, 55, 2–6 (2018)

  • T.K. Bera, Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng 2014, 381251, 2014/06/17 (2014)

    Article  Google Scholar 

  • D. Padmaraj, J.H. Miller, J. Wosik, W. Zagozdzon-Wosik, Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes. Biosens Bioelectron 29, 13–17, 2011/11/15/ (2011)

  • D. T. Price, A. R. A. Rahman, S. Bhansali, Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Biosens Bioelectron 24, 2071–2076 (2009)

  • M.-H. Wang, L.-S. Jang, A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations. Biosens Bioelectron 24, 2830–2835, 2009/05/15/ (2009)

    Article  Google Scholar 

  • R. Pradhan, A. Mitra, and S. Das, Simulation of three electrode device for bioimpedance study using COMSOL Multiphysics, in 2010 International Conference on Systems in Medicine and Biology, 37–40 (2010)

  • R. Pradhan, A. Mitra, and S. Das, Characterization of electrode/electrolyte interface for bioimpedance study, in IEEE Technology Students' Symposium, 275–280 (2011)

  • B. A. Boukamp, Equivalent circuit : (equivcrt.pas) : users manual. Enschede: University of Twente, Department of Chemical Technology, (1989)

  • D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J soc Ind Appl Math 11, 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  • A. Zhbanov, S. Yang, Electrochemical impedance spectroscopy of blood for sensitive detection of blood hematocrit, sedimentation and dielectric properties. Anal. Methods 9, 3302–3313 (2017)

    Article  Google Scholar 

  • A.K. Tran, A. Sapkota, J. Wen, J. Li, M. Takei, Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eight-parameter equivalent circuit. Biosens Bioelectron 119, 103–109, 2018/11/15/ (2018)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Biotechnology, Government of India (BT/PR 25095/NER/95/1011/2017). RP and A.K. are thankful to the Ministry of Education (MOE) for the fellowship. Department of Metallurgical and Materials Engineering and Institute Instrumentation Centre of Indian Institute of Technology Roorkee are sincerely acknowledged for providing the various analytical facilities.

Funding

Department of Biotechnology, Government of India (BT/PR 25095/NER/95/1011/2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rangadhar Pradhan or Sanjeev Manhas.

Ethics declarations

Conflict of interest

None.

Ethics approval

Approval from the Institutional Ethical and Biosafety Committee (BT/IHEC-IITR/2019/7525) for the collection of the blood sample.

Consent to participate

The ethical approval included the written consent of the person.

Consent for publication

(Y)

Code availability

(NA)

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, R., Raisa, S.A., Kumar, P. et al. Optimization, fabrication, and characterization of four electrode-based sensors for blood impedance measurement. Biomed Microdevices 23, 9 (2021). https://doi.org/10.1007/s10544-021-00545-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00545-4

Keywords

Navigation