Skip to main content
Log in

Oil–water biphasic parallel flow for the precise patterning of metals and cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Fluidic patterning is a convenient and versatile tool for the patterning of materials, cells and microstructures on surface and in microchannels. However, its performance is usually limited by transverse diffusion between fluid streams. It would blur the boundary and deteriorate the precision of patterns. In this paper, we adopted geometric confinement to generate biphasic parallel flow that is constituted of oil and water. Since there is minimum transverse diffusion in biphasic parallel flow, the performance of fluid patterning is expected to be improved. The results show that the metal (Silver and Chromium) patterns have distinct boundary and well-controlled geometry in comparison with that by conventional laminar flow patterning. Furthermore, the high biocompatibility of oil phase (perfluorodecalin, PFD) enables the precise patterning of viable bacteria inside microchannels. Our work demonstrated a new route of using biphasic parallel flow to patterning, which would serve wide applications in prototyping and research settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • E. Berthier, J. Warrick, B. Casavant, D.J. Beebe, Pipette-friendly laminar flow patterning for cell-based assays. Lab Chip 11, 2060–2065 (2011)

    Article  Google Scholar 

  • A. Bransky, N. Korin, S. Levenberg, Experimental and theoretical study of selective protein deposition using focused micro laminar flows. Biomed. Microdevices 10, 421–428 (2008)

    Article  Google Scholar 

  • H.J. Busscher, H.C. van der Mei, How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog. 8, e1002440 (2012)

    Article  Google Scholar 

  • L. Chen, G. Yang, S.T. Wang, Air-grid surface patterning provided by superhydrophobic surfaces. Small 8, 962–965 (2012)

    Article  Google Scholar 

  • S. Cho, S.J. Park, S.Y. Ko, J.O. Park, S. Park, Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed. Microdevices 14, 1019–1025 (2012)

    Article  Google Scholar 

  • J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15, 427–437 (2008)

    Article  Google Scholar 

  • R. Dreyfus, P. Tabeling, H. Willaime, Ordered and disordered patterns in two-phase flows in microchannels. Phys. Rev. Lett. 90, 144505 (2003)

    Article  Google Scholar 

  • J.P. Frampton, D. Lai, H. Sriram, S. Takayama, Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed. Microdevices 13, 1043–1051 (2011)

    Article  Google Scholar 

  • Y.X. Gao, L.W. Chen, Versatile control of multiphase laminar flow for in-channel microfabrication. Lab Chip 8, 1695–1699 (2008)

    Article  Google Scholar 

  • P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006)

    Article  Google Scholar 

  • M. Geissler, Y.N. Xia, Patterning: principles and some new developments. Adv. Mater. 16, 1249–1269 (2004)

    Article  Google Scholar 

  • Z.Y. Han, W.T. Li, Y.Y. Huang, B. Zheng, Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. Anal. Chem. 81, 5840–5845 (2009)

    Article  Google Scholar 

  • P.Y. He, D. Barthes-Biesel, E. Leclerc, Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems: effect of geometry. Microfluid. Nanofluid. 9, 293–301 (2010)

    Article  Google Scholar 

  • I.T. Horváth, Fluorous biphase chemistry. Acc. Chem. Res. 31, 641–650 (1998)

    Article  Google Scholar 

  • P.B. Howell, J.P. Golden, L.R. Hilliard, J.S. Erickson, D.R. Mott, F.S. Ligler, Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8, 1097–1103 (2008)

    Article  Google Scholar 

  • C.H. Hsieh, C.J.C. Huang, Y.Y. Huang, Patterned pdms based cell array system: a novel method for fast cell array fabrication. Biomed. Microdevices 12, 897–905 (2010)

    Article  Google Scholar 

  • X.W. Huang, L. Li, Q. Tu, J.C. Wang, W.M. Liu, X.Q. Wang, L. Ren, J.Y. Wang, On-chip cell migration assay for quantifying the effect of ethanol on Mcf-7 human breast cancer cells. Microfluid. Nanofluid. 10, 1333–1341 (2011)

    Article  Google Scholar 

  • K.J. Humphry, A. Ajdari, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz, Suppression of instabilities in multiphase flow by geometric confinement. Phys. Rev. E 79, 056310 (2009)

    Article  Google Scholar 

  • R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone, Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels. Appl. Phys. Lett. 76, 2376–2378 (2000)

    Article  Google Scholar 

  • X.Y. Jiang, D.A. Bruzewicz, A.P. Wong, M. Piel, G.M. Whitesides, Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. U. S. A. 102, 975–978 (2005)

    Article  Google Scholar 

  • G. Jing, S.F. Perry, S. Tatic-Lucic, Precise cell patterning using cytophobic self-assembled monolayer deposited on top of semi-transparent gold. Biomed. Microdevices 12, 935–948 (2010)

    Article  Google Scholar 

  • A.S. Kabalnov, K.N. Makarov, O.V. Shcherbakova, A.N. Nesmeyanov, Solubility of fluorocarbons in water as a key parameter determining fluorocarbon emulsion stability. J. Fluor. Chem. 50, 271–284 (1990)

    Article  Google Scholar 

  • P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285, 83–85 (1999)

    Article  Google Scholar 

  • P.J.A. Kenis, R.F. Ismagilov, S. Takayama, G.M. Whitesides, S.L. Li, H.S. White, Fabrication inside microchannels using fluid flow. Acc. Chem. Res. 33, 841–847 (2000)

    Article  Google Scholar 

  • T. Kong, J. Wu, M. To, K. Wai Kwok Yeung, H. Cheung Shum, L. Wang, Droplet based microfluidic fabrication of designer microparticles for encapsulation applications. Biomicrofluidics 6, 034104 (2012)

    Article  Google Scholar 

  • J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003)

    Article  Google Scholar 

  • L. Li, Y. Nie, X.T. Shi, H.K. Wu, D.T. Ye, H.D. Chen, Partial transfection of cells using laminar flows in microchannels. Biomicrofluidics 5, 036503 (2011)

    Article  Google Scholar 

  • D.R. Lide, Crc handbook of chemistry and physics, 86th Edn, 2005–2006 (CRC Press, Boca Raton, 2005), pp. 41–45. Section 16

    Google Scholar 

  • H.B. Mao, P.S. Cremer, M.D. Manson, A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl. Acad. Sci. U. S. A. 100, 5449–5454 (2003)

    Article  Google Scholar 

  • L.F. Mottram, S. Forbes, B.D. Ackley, B.R. Peterson, Hydrophobic analogues of rhodamine B and rhodamine 101: potent fluorescent probes of mitochondria in living C. elegans. Beilstein J. Org. Chem. 8, 2156–2165 (2012)

    Article  Google Scholar 

  • X. Mu, Q.L. Liang, P. Hu, K.N. Ren, Y.M. Wang, G.A. Luo, Laminar flow used as “liquid etch mask” in wet chemical etching to generate glass microstructures with an improved aspect ratio. Lab Chip 9, 1994–1996 (2009)

    Article  Google Scholar 

  • X. Mu, W. Zheng, J. Sun, W. Zhang, X. Jiang, Microfluidics for manipulating cells. Small 9, 9–21 (2013)

    Article  Google Scholar 

  • Z.H. Nie, E. Kumacheva, Patterning surfaces with functional polymers. Nat. Mater. 7, 277–290 (2008)

    Article  Google Scholar 

  • L. Peng, M. Yang, S.S. Guo, W. Liu, X.Z. Zhao, The effect of interfacial tension on droplet formation in flow-focusing microfluidic device. Biomed. Microdevices 13, 559–564 (2011)

    Article  Google Scholar 

  • T.T. Perkins, D.E. Smith, S. Chu, Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997)

    Article  Google Scholar 

  • B. Regenberg, U. Kruhne, M. Beyer, L.H. Pedersen, M. Simon, O.R.T. Thomas, J. Nielsen, T. Ahl, Use of laminar flow patterning for miniaturised biochemical assays. Lab Chip 4, 654–657 (2004)

    Article  Google Scholar 

  • K.N. Ren, Q.L. Liang, X. Mu, G.A. Luo, Y.M. Wang, Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab Chip 9, 733–736 (2009)

    Article  Google Scholar 

  • K. Ren, Y. Chen, H. Wu, New materials for microfluidics in biology. Curr. Opin. Biotechnol. 25, 78–85 (2014)

    Article  Google Scholar 

  • A. Sauret, H.C. Shum, Forced generation of simple and double emulsions in all-aqueous systems. Appl. Phys. Lett. 100, 154106 (2012)

    Article  Google Scholar 

  • H.C. Shum, Y.J. Zhao, S.H. Kim, D.A. Weitz, Multicompartment polymersomes from double emulsions. Angew. Chem. Int. Edit. 50, 1648–1651 (2011)

    Article  Google Scholar 

  • H.C. Shum, J. Varnell, D.A. Weitz, Microfluidic fabrication of water-in-water (W/W) jets and emulsions. Biomicrofluidics 6, 012808 (2012)

    Article  Google Scholar 

  • J.R. SooHoo, G.M. Walker, Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed. Microdevices 11, 323–329 (2009)

    Article  Google Scholar 

  • J.E. Squires, Artificial blood. Science 295, 1002–1005 (2002)

    Article  Google Scholar 

  • T.M. Squires, S.R. Quake, Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005)

    Article  Google Scholar 

  • K. Sun, L.S. Song, Y.Y. Xie, D.B. Liu, D. Wang, Z. Wang, W.S. Ma, J.S. Zhu, X.Y. Jiang, Using self-polymerized dopamine to modify the antifouling property of oligo(ethylene glycol) self-assembled monolayers and its application in cell patterning. Langmuir 27, 5709–5712 (2011)

    Article  Google Scholar 

  • K. Sun, Y.Y. Xie, D.K. Ye, Y.Y. Zhao, Y. Cui, F. Long, W. Zhang, X.Y. Jiang, Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir 28, 2131–2136 (2012)

    Article  Google Scholar 

  • S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U. S. A. 96, 5545–5548 (1999)

    Article  Google Scholar 

  • M.W. Toepke, S.H. Brewer, D.M. Vu, K.D. Rector, J.E. Morgan, R.B. Gennis, P.J.A. Kenis, R.B. Dyer, Microfluidic flow-flash: method for investigating protein dynamics. Anal. Chem. 79, 122–128 (2007)

    Article  Google Scholar 

  • J. Wang, W.H. Pei, B. Yuan, K. Guo, K. Sun, H.B. Sun, H.D. Chen, An integrated device for patterning cells and selectively detaching. Biomed. Microdevices 14, 471–481 (2012)

    Article  Google Scholar 

  • B. Yao, G.A. Luo, X. Feng, W. Wang, L.X. Chen, Y.M. Wang, A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4, 603–607 (2004)

    Article  Google Scholar 

  • X. Zhou, L. Lau, W.W.L. Lam, S.W.N. Au, B. Zheng, Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Anal. Chem. 79, 4924–4930 (2007)

    Article  Google Scholar 

  • W.A. Zisman, Influence of constitution on adhesion. Ind. Eng. Chem. 55, 18–38 (1963)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science and Technology Major Project of China (2013ZX09507005), National Natural Science Foundation of China (21305162, 21235004 and 21175080), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (to Q. L.). The authors thank Prof. Xingyu Jiang in National Center of Nanoscience and Technology for providing fluorescence microscope, and Prof. Bo Zheng at Chinese University of HongKong, Prof. Bo Yao at Zhejiang University and Prof. Ho Cheung Shum at The University of HongKong for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qionglin Liang, Zhi Zheng or Guoan Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 948 kb)

Video (MPG 4022 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, X., Liang, Q., Zhou, J. et al. Oil–water biphasic parallel flow for the precise patterning of metals and cells. Biomed Microdevices 16, 245–253 (2014). https://doi.org/10.1007/s10544-013-9828-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9828-y

Keywords

Navigation