Skip to main content
Log in

A convolution quadrature using derivatives and its application

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to explore the convolution quadrature based on a class of two-point Hermite collocation methods. Incorporating derivatives into the numerical scheme enhances the accuracy while preserving stability, which is confirmed by the convergence analysis for the discretization of the initial value problem. Moreover, we employ the resulting quadrature to evaluate a class of highly oscillatory integrals. The frequency-explicit convergence analysis demonstrates that the proposed convolution quadrature surpasses existing convolution quadratures, achieving the highest convergence rate with respect to the oscillation among them. Numerical experiments involving convolution integrals with smooth, weakly singular, and highly oscillatory Bessel kernels illustrate the reliability and efficiency of the proposed convolution quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banjai, L., López-Fernández, M.: Efficient high order algorithms for fractional integrals and fractional differential equations. Numer. Math. 141(2), 289–317 (2019)

    Article  MathSciNet  Google Scholar 

  2. Banjai, L., Lubich, C., Nick, J.: Time-dependent acoustic scattering from generalized impedance boundary conditions via boundary elements and convolution quadrature. IMA J. Numer. Anal. 42(1), 1–26 (2022)

    Article  MathSciNet  Google Scholar 

  3. Banjai, L., Sayas, F.: Integral Equation Methods for Evolutionary PDE: A Convolution Quadrature Approach. Springer Nature (2022)

  4. Brunner, H., Davies, P.J., Duncan, D.B.: Discontinuous Galerkin approximations for Volterra integral equations of the first kind. IMA J. Numer. Anal. 29(4), 856–881 (2009)

    Article  MathSciNet  Google Scholar 

  5. Davies, P.J., Duncan, D.B.: Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42(3), 1167–1188 (2004)

    Article  MathSciNet  Google Scholar 

  6. Davies, P.J., Duncan, D.B.: Convolution spline approximations for time domain boundary integral equations. J. Integral Equ. Appl. 26(3), 369–410 (2014)

    Article  MathSciNet  Google Scholar 

  7. Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. A Math. Physi. Eng. Sci. 461(2005), 1383–1399 (2005)

    MathSciNet  ADS  Google Scholar 

  8. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    Article  MathSciNet  Google Scholar 

  9. Lang, S.: Complex Analysis. Springer, Berlin (2003)

    Google Scholar 

  10. Levin, D.: Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations. Math. Comput. 38(158), 531–538 (1982)

    Article  MathSciNet  Google Scholar 

  11. Li, B., Xiang, S., Liu, G.: Laplace transforms for evaluation of Volterra integral equation of the first kind with highly oscillatory kernel. Comput. Appl. Math. 38, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  12. Li, B., Ma, S.: Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 60(2), 503–528 (2022)

    Article  MathSciNet  Google Scholar 

  13. López-Fernández, M., Sauter, S.: Generalized convolution quadrature based on Runge–Kutta methods. Numer. Math. 133(4), 743–779 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numerische Mathematik 52(2), 129–145 (1988)

    Article  MathSciNet  Google Scholar 

  15. Lubich, C.: Convolution quadrature and discretized operational calculus. II. Numerische Mathematik 52(4), 413–425 (1988)

    Article  MathSciNet  Google Scholar 

  16. Lubich, C.: On convolution quadrature and Hille-Phillips operational calculus. Appl. Numer. Math. 9(3–5), 187–199 (1992)

    Article  MathSciNet  Google Scholar 

  17. Lubich, C., Ostermann, A.: Runge–Kutta methods for parabolic equations and convolution quadrature. Math. Comput. 60(201), 105–131 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  18. Ma, J., Liu, H.: On the convolution quadrature rule for integral transforms with oscillatory Bessel kernels. Symmetry 10(7), 239 (2018)

    Article  ADS  Google Scholar 

  19. Olver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  20. Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2006)

    Article  MathSciNet  Google Scholar 

  21. Sayas, F.: Retarded Potentials and Time Domain Boundary Integral Equation: A Road Map. Springer, Berlin (2016)

    Book  Google Scholar 

  22. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MathSciNet  Google Scholar 

  23. Trefethen, L.N.: Approximation Theorey and Approximation Practice. SIAM, Philadelphia (2013)

    Google Scholar 

  24. Wang, Y., Xiang, S.: Fast and stable augmented Levin methods for highly oscillatory and singular integrals. Math. Comput. 91, 1893–1923 (2022)

    Article  MathSciNet  Google Scholar 

  25. Xiang, S., Wang, H.: Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comput. 79(270), 829–844 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. Xiang, S., Brunner, H.: Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels. BIT Numer. Math. 53(1), 241–263 (2013)

    Article  MathSciNet  Google Scholar 

  27. Xu, K., Loureiro, F.: Spectral approximation of convoution operators. SIAM J. Sci. Comput. 40(4), A2336–A2355 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to anonymous reviewers for their insightful comments, which significantly enhanced the quality of our paper. J. Ma’s work was partly supported by National Natural Science Foundation of China (No. 11901133) and Science and Technology Foundation of Guizhou Province (No. QKHJC[2020]1Y014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Ma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Stefano De Marchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Ma, J. & Liu, H. A convolution quadrature using derivatives and its application. Bit Numer Math 64, 8 (2024). https://doi.org/10.1007/s10543-024-01009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-024-01009-w

Keywords

Mathematics Subject Classification

Navigation