Skip to main content
Log in

Singular quadratic eigenvalue problems: linearization and weak condition numbers

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of \(\delta \)-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases \(\delta \)-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikari, B., Alam, R., Kressner, D.: Structured eigenvalue condition numbers and linearizations for matrix polynomials. Linear Algebra Appl. 435(9), 2193–2221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byers, R., Kressner, D.: On the condition of a complex eigenvalue under real perturbations. BIT 44(2), 209–214 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byers, R., Mehrmann, V., Hongguo, X.: Trimmed linearizations for structured matrix polynomials. Linear Algebra Appl. 429(10), 2373–2400 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Terán, F., Dopico, F.M.: First order spectral perturbation theory of square singular matrix polynomials. Linear Algebra Appl. 432(4), 892–910 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Terán, F., Dopico, F., Mackey, D.: Linearizations of singular matrix polynomials and the recovery of minimal indices. Electron. J. Linear Algebra 18, 371–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Terán, F., Dopico, F.M., Moro, J.: First order spectral perturbation theory of square singular matrix pencils. Linear Algebra Appl. 429(2–3), 548–576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demmel, J., Kågström, Bo.: Accurate solutions of ill-posed problems in control theory. In: SIAM Conference on Linear Algebra in Signals, Systems, and Control, vol. 9, pp. 126–145. 1988. Boston, Mass (1986)

  8. Demmel, J., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil \(A-\lambda B\): Robust software with error bounds and applications. I. Theory and algorithms. ACM Trans. Math. Softw. 19(2), 160–174 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demmel, J., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil \(A-\lambda B\): Robust software with error bounds and applications. II. Software and applications. ACM Trans. Math. Softw. 19(2), 175–201 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dopico, F.M., Noferini, V.: Root polynomials and their role in the theory of matrix polynomials. Linear Algebra Appl. 584, 37–78 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dopico, F., Noferini V.: The \(\mathbb{D}\mathbb{L}(P)\) vector space of pencils for singular matrix polynomials. arXiv:2212.08212 (2022)

  12. Fan, H.-Y., Lin, W.-W., Van Dooren, P.: Normwise scaling of second order polynomial matrices. SIAM J. Matrix Anal. Appl. 26(1), 252–256 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gohberg, I., Kaashoek, M.A., Lancaster, P.: General theory of regular matrix polynomials and band Toeplitz operators. Integr. Equ. Oper. Theory 11(6), 776–882 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edn. Johns Hopkins University Press, Baltimore (2013)

    Google Scholar 

  15. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Philadelphia (2002)

    Book  MATH  Google Scholar 

  16. Higham, N.J., Mackey, D.S., Tisseur, F.: The conditioning of linearizations of matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 1005–1028 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hochstenbach, M.E., Mehl, C., Plestenjak, B.: Solving singular generalized eigenvalue problems by a rank-completing perturbation. SIAM J. Matrix Anal. Appl. 40(3), 1022–1046 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kågström B.: 8.7 singular matrix pencils. In: Templates for the solution of algebraic eigenvalue problems: A practical guide. 11(668), 260 (2000)

  19. Lotz, M., Noferini, V.: Wilkinson’s bus: Weak condition numbers, with an application to singular polynomial eigenproblems. Found. Comput. Math. 20(6), 1439–1473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 971–1004 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shi, C.: Linear Differential-Algebraic Equations of Higher-Order and the Regularity or Singularity of Matrix Polynomials. Doctoral thesis, Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften (2004)

  22. Stewart, G.W.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 727–764 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309(1–3), 339–361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra Appl. 27, 103–140 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Dooren, P.: The generalized eigenstructure problem in linear system theory. IEEE Trans. Automat. Control 26(1), 111–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Dooren, P., Dewilde, P.: The eigenstructure of an arbitrary polynomial matrix: Computational aspects. Linear Algebra Appl. 50, 545–579 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wedin, P.Å.: Perturbation bounds in connection with singular value decomposition. Nord. Tidskr. Informationsbehandling (BIT) 12, 99–111 (1972)

    MathSciNet  MATH  Google Scholar 

  29. Wilkinson, J.H.: Kronecker’s canonical form and the \(QZ\) algorithm. Linear Algebra Appl. 28, 285–303 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, L., Yangfeng, S.: A backward stable algorithm for quadratic eigenvalue problems. SIAM J. Matrix Anal. Appl. 35(2), 499–516 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Bor Plestenjak for helpful discussions on the numerical solution of singular eigenvalue problems, and Petra Lazić for discussions regarding the theory of \(\delta \)–weak condition numbers. The authors also thank the reviewers for their careful reading and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Šain Glibić.

Ethics declarations

Conflict of interest statement

Not applicable.

Additional information

Communicated by Elias Jarlebring.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first author was supported by the SNSF research project Probabilistic methods for joint and singular eigenvalue problems, grant number: 200021 L_192049. The work of the second author was supported by the CSF research project Randomized low rank algorithms and applications to parameter dependent problems, grant number: IP-2019-04-6268. Part of this work was done while the second author was a PostDoctoral researcher at EPFL.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kressner, D., Šain Glibić, I. Singular quadratic eigenvalue problems: linearization and weak condition numbers. Bit Numer Math 63, 18 (2023). https://doi.org/10.1007/s10543-023-00960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00960-4

Keywords

Mathematics Subject Classification

Navigation