Skip to main content
Log in

A fractional Adams–Simpson-type method for nonlinear fractional ordinary differential equations with non-smooth data

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We propose a fractional Adams–Simpson-type method for nonlinear fractional ordinary differential equations with fractional order \(\alpha \in (0,1)\). In our method, a nonuniform mesh is used so that the optimal convergence order can be recovered for non-smooth data. By developing a modified fractional Grönwall inequality, we prove that the method is unconditionally convergent under the local Lipschitz condition of the nonlinear term, and show that with a proper mesh parameter, the method can achieve the optimal convergence order \(3+\alpha \) even if the given data is not smooth. Under very mild conditions, the nonlinear stability of the method is analyzed by using a perturbation technique. The extensions of the method to multi-term nonlinear fractional ordinary differential equations and multi-order nonlinear fractional ordinary differential systems are also discussed. Numerical results confirm the theoretical analysis results and demonstrate the effectiveness of the method for non-smooth data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Amblard, F., Maggs, A.C., Yurke, B., Pargellis, A.N., Leibler, S.: Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 77, 4470–4473 (1996)

    Google Scholar 

  3. Bagley, R.L., Calico, R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guidance Control Dyn. 14, 304–311 (1991)

    Google Scholar 

  4. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Google Scholar 

  5. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Google Scholar 

  6. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    MathSciNet  Google Scholar 

  7. Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations. North Holland, Amsterdam (1986)

    MATH  Google Scholar 

  8. Cao, Y., Herdman, T., Xu, Y.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cao, J.X., Li, C.P., Chen, Y.Q.: High-order approximation to Caputo derivatives and Caputo-type advection–diffusion equations (II). Fract. Calc. Appl. Anal. 18, 735–761 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: A new predictor–corrector method for fractional differential equations. Appl. Math. Comput. 244, 158–182 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Deng, W.H.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 1768–1777 (2007)

    MathSciNet  Google Scholar 

  15. Deng, W.H.: Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227, 1510–1522 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27, 155–173 (2004)

    Google Scholar 

  17. Diethelm, K.: Multi-term fractional differential equations, multi-order fractional differential systems and their numerical solution. J. Eur. Syst. Autom. 42, 665–676 (2008)

    Google Scholar 

  18. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    MATH  Google Scholar 

  19. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Diethelm, K., Ford, N.J.: Numerical solution of the Bagley–Torvik equation. BIT Numer. Math. 42, 490–507 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154, 621–640 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186, 482–503 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Du, R., Yan, Y., Liang, Z.: A high-order scheme to approximate the Caputo fractional derivative and its application to solve the fractional diffusion wave equation. J. Comput. Phys. 376, 1312–1330 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Ford, N.J., Morgado, M.L., Rebelo, M.: Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, 874–891 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Galeone, L., Garrappa, R.: Fractional Adams–Moulton methods. Math. Comput. Simulation 79, 1358–1367 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Gao, G.-H., Sun, Z.-Z., Zhang, H.-W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Garrappa, R.: On linear stability of predictor–corrector algorithms for fractional differential equations. Int. J. Comput. Math. 87, 2281–2290 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simulation 110, 96–112 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34, 1027–1033 (1998)

    Google Scholar 

  32. Huang, J., Tang, Y., Vázquez, L.: Convergence analysis of a block-by-block method for fractional differential equations. Numer. Math. Theor. Methods Appl. 5, 229–241 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)

  34. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  35. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)

    MathSciNet  MATH  Google Scholar 

  36. Kumar, P., Agrawal, O.P.: An approximate method for numerical solution of fractional differential equations. Signal Process. 86, 2602–2610 (2006)

    MATH  Google Scholar 

  37. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Li, H.F., Cao, J.X., Li, C.: High-order approximations to Caputo derivatives and Caputo-type advection–diffusion equations (III). J. Comput. Appl. Math. 299, 159–175 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Li, B., Ma, S.: A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data. J. Sci. Comput. 87, 23 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Li, B., Ma, S.: Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 60, 503–528 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Li, C., Tao, C.X.: On the fractional Adams method. Comput. Math. Appl. 58, 1573–1588 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Lin, R., Liu, F.: Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 66, 856–869 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Liu, Y., Roberts, J., Yan, Y.: A note on finite difference methods for nonlinear fractional differential equations with non-uniform meshes. Int. J. Comput. Math. 95, 1151–1169 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Liu, Y., Roberts, J., Yan, Y.: Detailed error analysis for a fractional Adams method with graded meshes. Numer. Algorithms 78, 1195–1216 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Lubich, C.: Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 45, 463–469 (1985)

    MathSciNet  MATH  Google Scholar 

  49. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  50. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Perdikaris, P., Karniadakis, G.E.: Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42, 1012–1023 (2014)

    Google Scholar 

  53. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  54. Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems. Interscience, New York (1967)

    MATH  Google Scholar 

  55. Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer, Berlin (1973)

    MATH  Google Scholar 

  56. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    MathSciNet  MATH  Google Scholar 

  58. Wang, W., Chen, X., Ding, D., Lei, S.-L.: Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 92, 2596–2614 (2015)

    MathSciNet  MATH  Google Scholar 

  59. Yan, Y., Pal, K., Ford, N.J.: Higher order numerical methods for solving fractional differential equations. BIT Numer. Math. 54, 555–584 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37, A55–A78 (2015)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, Z., Zeng, F., Karniadakis, G.E.: Optimal error estimates of spectral Petrov–Galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 53, 2074–2096 (2015)

    MathSciNet  MATH  Google Scholar 

  62. Zhao, L., Deng, W.H.: Jacobian–predictor–corrector approach for fractional ordinary differential equations. Adv. Comput. Math. 40, 137–165 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Mihaly Kovacs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by Science and Technology Commission of Shanghai Municipality (STCSM) (No. 22DZ2229014, No. 21JC1402500).

A Appendix

A Appendix

In this appendix, we prove Lemma 4.1.

Proof

It is clear that

$$\begin{aligned} g(t)-g(t_{0})=\int _{t_{0}}^{t} g^{\prime }(\xi )\, {\textrm{d}}\xi = t\int _{0}^{1} g^{\prime }(st)\, {\textrm{d}}s, \qquad t>0. \end{aligned}$$
(A.1)

This proves

$$\begin{aligned} R_{0,0}g(t)= t\int _{0}^{1} g^{\prime }(st)\, {\textrm{d}}s, \qquad t>0, \end{aligned}$$
(A.2)

and so (4.5) is proved. By Taylor expansion with integral remainder,

$$\begin{aligned} g(t_{k})= & {} \sum _{l=0}^{1} \frac{1}{l!}g^{(l)}(t)(t_{k}-t)^{l} +\int _{t}^{t_{k}} g^{(2)}(\xi ) (t_{k}-\xi )\, {\textrm{d}} \xi , \qquad k\ge 0,~t>0, \nonumber \\ \end{aligned}$$
(A.3)
$$\begin{aligned} g(t_{k})= & {} \sum _{l=0}^{2} \frac{1}{l!}g^{(l)}(t)(t_{k}-t)^{l} +\frac{1}{2}\int _{t}^{t_{k}} g^{(3)}(\xi ) (t_{k}-\xi )^{2}\, {\textrm{d}} \xi , \qquad k\ge 0,~t>0. \nonumber \\ \end{aligned}$$
(A.4)

This implies

$$\begin{aligned} R_{1,1}g(t)= & {} g(t)-\sum _{k=0}^{1} l_{k,1,1}(t)g(t_{k})\nonumber \\= & {} g(t)-\sum _{l=0}^{1} \frac{1}{l!}g^{(l)}(t)\sum _{k=0}^{1} l_{k,1,1}(t)(t_{k}-t)^{l}-\sum _{k=0}^{1} l_{k,1,1}(t)\int _{t}^{t_{k}} g^{(2)}(\xi ) (t_{k}-\xi )\, {\textrm{d}} \xi \nonumber \\= & {} -\sum _{k=0}^{1} l_{k,1,1}(t) (t-t_{k})^{2} \int _{0}^{1} g^{(2)}(t_{k}(1-s)+ts) s \, {\textrm{d}} s, \qquad t>0, \end{aligned}$$
(A.5)
$$\begin{aligned} R_{2,2}g(t)= & {} g(t)-\sum _{k=0}^{2} l_{k,2,2}(t)g(t_{k})\nonumber \\= & {} g(t)-\sum _{l=0}^{1} \frac{1}{l!}g^{(l)}(t)\sum _{k=0}^{2} l_{k,2,2}(t)(t_{k}-t)^{l}-\sum _{k=0}^{2} l_{k,2,2}(t)\int _{t}^{t_{k}} g^{(2)}(\xi ) (t_{k}-\xi )\, {\textrm{d}} \xi \nonumber \\= & {} -\sum _{k=0}^{2} l_{k,2,2}(t) (t-t_{k})^{2} \int _{0}^{1} g^{(2)}(t_{k}(1-s)+ts) s \, {\textrm{d}} s, \qquad t>0, \end{aligned}$$
(A.6)

and

$$\begin{aligned} R_{2,q}g(t)= & {} g(t)-\sum _{k=q-2}^{q} l_{k,2,q}(t)g(t_{k})\nonumber \\= & {} g(t)-\sum _{l=0}^{2} \frac{1}{l!} g^{(l)}(t)\sum _{k=q-2}^{q} l_{k,2,q}(t)(t_{k}-t)^{l}\nonumber \\{} & {} -\frac{1}{2}\sum _{k=q-2}^{q} l_{k,2,q}(t)\int _{t}^{t_{k}} g^{(3)}(\xi ) (t_{k}-\xi )^{2}\, {\textrm{d}} \xi \nonumber \\= & {} \frac{1}{2}\sum _{k=q-2}^{q} l_{k,2,q}(t) (t-t_{k})^{3} \int _{0}^{1} g^{(3)}(t_{k}(1-s)+ts) s^{2} \, {\textrm{d}} s,\nonumber \\{} & {} \quad q\ge 2,~t>0. \end{aligned}$$
(A.7)

This proves (4.6)–(4.8). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM., Xie, B. A fractional Adams–Simpson-type method for nonlinear fractional ordinary differential equations with non-smooth data. Bit Numer Math 63, 7 (2023). https://doi.org/10.1007/s10543-023-00952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00952-4

Keywords

Mathematics Subject Classification

Navigation