Skip to main content
Log in

Stability of implicit multiderivative deferred correction methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Very recently, a novel class of parallelizable high-order time discretization schemes has been introduced in Schütz et al. (J Sci Comput 90(54):1–33, 2022). In this current work, we analyze the stability properties of those schemes and introduce a small but effective modification which only necessitates minor modifications of existing implementations. It is shown how this modification leads to A(\(\alpha \))-stable schemes with \(\alpha \) being close to \(90^{\circ }\). Numerical examples illustrate an additional favorable influence of this modification on the accuracy of those schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aiguobasimwin, I.B., Okuonghae, R.I.: A class of two-derivative two-step Runge–Kutta methods for non-stiff ODEs. J. Appl. Math. Article ID 2459809, 9 (2019)

  2. Butcher, J.C.: On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20, 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40(4), 415–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, R., Tsai, A.: On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christlieb, A.J., Gottlieb, S., Grant, Z.J., Seal, D.C.: Explicit strong stability preserving multistage two-derivative time-stepping schemes. J. Sci. Comput. 68, 914–942 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dittmann, A.J.: High-order multiderivative IMEX schemes. Appl. Numer. Math. 160, 205–216 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT. Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gekeler, E.W.: On implicit Runge–Kutta methods with higher derivatives. BIT 28, 809–816 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Godlewski, E., Raviart, P.A.: Hyperbolic Systems of Conservation Laws. Ellipses Paris (1991)

  10. Gottlieb, S., Grant, Z.J., Hu, J., Shu, R.: High order strong stability preserving multiderivative implicit and IMEX Runge–Kutta methods with asymptotic preserving properties. SIAM J. Numer. Anal. 60(1), 423–449 (2022)

    Article  MathSciNet  Google Scholar 

  11. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Springer Series in Computational Mathematics (1987)

  12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics (1991)

  13. Jaust, A., Schütz, J., Seal, D.C.: Implicit multistage two-derivative discontinuous Galerkin schemes for viscous conservation laws. J. Sci. Comput. 69, 866–891 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kastlunger, K., Wanner, G.: On Turan type implicit Runge–Kutta methods. Computing 9, 317–325 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Okuonghae, R.I., Ikhile, M.N.O.: L(\(\alpha \))-stable multi-derivative GLM. J. Algorithms Comput. Technol. 9(4), 339–376 (2015). https://doi.org/10.1260/1748-3018.9.4.339

    Article  MathSciNet  Google Scholar 

  16. Ong, B.W., Spiteri, R.J.: Deferred correction methods for ordinary differential equations. J. Sci. Comput. 83(3), Paper No. 60, 29 (2020)

  17. Schütz, J., Seal, D.: An asymptotic preserving semi-implicit multiderivative solver. Appl. Numer. Math. 160, 84–101 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schütz, J., Seal, D.C., Zeifang, J.: Parallel-in-time high-order multiderivative IMEX solvers. J. Sci. Comput. 90(54), 1–33 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Seal, D., Güçlü, Y., Christlieb, A.: High-order multiderivative time integrators for hyperbolic conservation laws. J. Sci. Comput. 60, 101–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stroud, A.H., Stancu, D.D.: Quadrature formulas with multiple Gaussian nodes. SIAM J. Numer. Anal. 2, 129–143 (1965)

    MathSciNet  MATH  Google Scholar 

  21. Turacı, M.Ö., Öziş, T.: Derivation of three-derivative Runge–Kutta methods. Numer. Algorithms 74(1), 247–265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Turán, P.: On the theory of the mechanical quadrature. Acta Universitatis Szegediensis Acta Scientiarum Mathematicarum 12, 30–37 (1950)

    MathSciNet  MATH  Google Scholar 

  23. Zeifang, J., Schütz, J.: Two-derivative deferred correction time discretization for the discontinuous Galerkin method. arXiv preprint arXiv:2109.04804 (2021)

Download references

Acknowledgements

J. Zeifang was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project No. 457811052. D. Seal was funded by the Office of Naval Research, Grant Number N0001419WX01523 and N0001420WX00219. The computing resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Zeifang.

Additional information

Communicated by Christian Lubich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeifang, J., Schütz, J. & Seal, D.C. Stability of implicit multiderivative deferred correction methods. Bit Numer Math 62, 1487–1503 (2022). https://doi.org/10.1007/s10543-022-00919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00919-x

Keywords

Mathematics Subject Classification

Navigation