Skip to main content
Log in

Stable application of Filon–Clenshaw–Curtis rules to singular oscillatory integrals by exponential transformations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Highly oscillatory integrals, having amplitudes with algebraic (or logarithmic) endpoint singularities, are considered. An integral of this kind is first transformed into a regular oscillatory integral over an unbounded interval. After applying the method of finite sections, a composite modified Filon–Clenshaw–Curtis rule, recently developed by the author, is applied on it. By this strategy the original integral can be computed in a more stable manner, while the convergence orders of the composite Filon–Clenshaw–Curtis rule are preserved. By introducing the concept of an oscillation subinterval, we propose algorithms, which employ composite Filon–Clenshaw–Curtis rules on rather small intervals. The integral outside the oscillation subinterval is non-oscillatory, so it can be computed by traditional quadrature rules for regular integrals, e.g. the Gaussian ones. We present several numerical examples, which illustrate the accuracy of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chandler-Wilde, S., Graham, I., Langdon, S., Spence, E.: Numerical-asymptotic boundary integral methods in high-frequency scattering. Acta Numer. 21, 89–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deaño, A., Huybrechs, D.: Complex Gaussian quadrature of oscillatory integrals. Numer. Math. 112, 197–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Domínguez, V., Graham, I., Kim, T.: Filon–Clenshaw–Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points. SIAM J. Numer. Anal. 51, 1542–1566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Domínguez, V., Graham, I., Smyshlyaev, V.: Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 31, 1253–1280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Higham, N.: The accuracy of floating point summation. SIAM J. Sci. Comput. 14, 783–799 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huybrechs, D., Olver, S.: Highly oscillatory quadrature. In: Engquist, B., Fokas, T., Hairer, E., Iserles, A. (eds.) Highly Oscillatory Problems, pp. 25–50. Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  7. Huybrechs, D., Olver, S.: Superinterpolation in highly oscillatory quadrature. Found. Comput. Math. 12, 203–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iri, M., Moriguti, S., Takasawa, Y.: On a certain quadrature formula. J. Comput. Appl. Math. 17, 3–20 (1987). (reprinted translation of 1970 paper in Japanese)

    Article  MathSciNet  MATH  Google Scholar 

  9. Majidian, H.: Modified Filon–Clenshaw–Curtis rules for oscillatory integrals with a nonlinear oscillator (2016). arXiv:1604.05074

  10. Mallat, S., Hwang, W.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38, 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mori, M.: An IMT-type double exponential formula for numerical integration. Publ. Res. Inst. Math. Sci. 14, 713–729 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mori, M.: Discovery of the double exponential transformation and its developments. Publ. Res. Inst. Math. Sci. 41, 897–935 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mori, M., Sugihara, M.: The double-exponential transformation in numerical analysis. J. Comput. Appl. Math. 127, 287–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26, 1955–1988 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Olver, S.: Numerical approximation of highly oscillatory integrals. Ph.D. thesis, University of Cambridge (2008)

  16. Rizzardi, M.: Detection of the singularities of a complex function by numerical approximations of its Laurent coefficients. Numer. Algoritm. (2017). https://doi.org/10.1007/s11075-017-0349-2

  17. Sag, T., Szekeres, G.: Numerical evaluation of high-dimensional integrals. Math. Comp. 18, 245–253 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schwartz, C.: Numerical integration of analytic functions. J. Comput. Phys. 4, 19–29 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takahasi, H., Mori, M.: Estimation of errors in the numerical quadrature of analytic functions. Appl. Anal. 1, 201–229 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Takahasi, H., Mori, M.: Quadrature formulas obtained by variable transformation. Numer. Math. 21, 206–219 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Takahasi, H., Mori, M.: Double exponential formulas for numerical integration. Publ. Res. Inst. Math. Sci. 9, 721–741 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tourigny, Y., Grinfeld, M.: Deciphering singularities by discrete methods. Math. Comput 62, 155–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Trefethen, L., Weideman, J.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiang, S.: Efficient Filon-type methods for \(\int ^b_af(x)e^{{\rm i}\omega g(x)}\,{{\rm d}}x\). Numer. Math. 105, 633–658 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xiang, S., Cho, Y., Wang, H., Brunner, H.: Clenshaw–Curtis–Filon-type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Anal. 31, 1281–1314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Majidian.

Additional information

Communicated by Michael Floater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidian, H. Stable application of Filon–Clenshaw–Curtis rules to singular oscillatory integrals by exponential transformations. Bit Numer Math 59, 155–181 (2019). https://doi.org/10.1007/s10543-018-0730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0730-0

Keywords

Mathematics Subject Classification

Navigation