Skip to main content
Log in

High-order splitting schemes for semilinear evolution equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We first derive necessary and sufficient stiff order conditions, up to order four, for exponential splitting schemes applied to semilinear evolution equations. The main idea is to identify the local splitting error as a sum of quadrature errors. The order conditions of the quadrature rules then yield the stiff order conditions in an explicit fashion, similarly to that of Runge–Kutta schemes. Furthermore, the derived stiff conditions coincide with the classical non-stiff conditions. Secondly, we propose an abstract convergence analysis, where the linear part of the vector field is assumed to generate a group or a semigroup and the nonlinear part is assumed to be smooth and to satisfy a set of compatibility requirements. Concrete applications include nonlinear wave equations and diffusion-reaction processes. The convergence analysis also extends to the case where the nonlinear flows in the exponential splitting scheme are approximated by a sufficiently accurate one-step method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. 82, 1559–1576 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT 49, 487–508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Faou, E.: Analysis of splitting methods for reaction-diffusion problems using stochastic calculus. Math. Comput. 78, 1467–1483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goldman, D., Kaper, T.: \(N\)th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Hansen, E., Kramer, F., Ostermann, A.: A second-order positivity preserving scheme for semilinear parabolic problems. Appl. Numer. Math. 62, 1428–1435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hansen, E., Ostermann, A.: Exponential splitting for unbounded operators. Math. Comput. 78, 1485–1496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT 49, 527–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Holden, H., Lubich, C., Risebro, N.H.: Operator splitting for partial differential equations with Burgers nonlinearity. Math. Comput. 82, 173–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  12. Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT 40, 735–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77, 2141–2153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murua, A., Sanz-Serna, J.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. A 357, 1079–1100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  16. Renardy, M., Rogers, R.: An Introduction to Partial Differential Equations. Springer, New York (2004)

    MATH  Google Scholar 

  17. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A 146, 319–323 (1990)

    Article  MathSciNet  Google Scholar 

  18. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  19. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46, 2022–2038 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskil Hansen.

Additional information

Communicated by Christian Lubich.

The work of E. Hansen was supported by the Swedish Research Council under Grant 621-2011-5588.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, E., Ostermann, A. High-order splitting schemes for semilinear evolution equations. Bit Numer Math 56, 1303–1316 (2016). https://doi.org/10.1007/s10543-016-0604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-016-0604-2

Keywords

Mathematics Subject Classification

Navigation