Skip to main content
Log in

Exponential almost Runge-Kutta methods for semilinear problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present a new class of one-step, multi-value Exponential Integrator (EI) methods referred to as Exponential Almost Runge-Kutta (EARK) methods which involve the derivatives of a nonlinear function of the solution. In order to approximate such derivatives to a sufficient accuracy, the EARK methods will be implemented within the broader framework of Exponential Almost General Linear Methods (EAGLMs) to accommodate past values of this nonlinear function and becoming multistep in nature as a consequence. Established EI methods, such as Exponential Time Differencing (ETD) methods, Exponential Runge-Kutta (ERK) methods and Exponential General Linear Methods (EGLMs) become special cases of EAGLMs. We present order conditions which facilitate the construction of two- and three-stage EARK methods and, when cast in an EAGLM format, we perform a stability analysis to enable a comparison with existing EI methods. We conclude with some numerical experiments which confirm the convergence order and also demonstrate the computational efficiency of these new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Al-Mohy, A., Higham, N.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergamaschi, L., Caliari, M., Martínez, A., Vianello, M.: Comparing Leja and Krylov approximations of large scale matrix exponentials. In: ICCS 2006, Reading (UK), Springer LNCS, vol. 3994, pp. 685–692 (2006)

    Chapter  Google Scholar 

  3. Bergamaschi, L., Vianello, M.: Efficient computation of the exponential operator for large, sparse, symmetric matrices. Numer. Linear Algebra Appl. 7(1), 27–45 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berland, H., Skaflestad, B., Wright, W.: Expint—a Matlab package for exponential integrators. ACM Trans. Math. Softw. 33(1), 1–17 (2007)

    Article  Google Scholar 

  5. Beylkin, G., Keiser, J., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147(2), 362–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butcher, J.: On the convergence of numerical solutions to ordinary differential equations. Math. Comput. 20, 1–10 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. Butcher, J.: General linear methods. Comput. Math. Appl. 31(4–5), 105–112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Butcher, J.: An introduction to “Almost Runge-Kutta” methods. Appl. Numer. Math. 24(2–3), 331–342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators. Appl. Numer. Math. 59(3–4), 568–581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvo, M., Portillo, A.: Variable step implementation of ETD methods for semilinear problems. Appl. Math. Comput. 196(2), 627–637 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176(2), 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friesner, R., Tuckerman, L., Dornblaser, B., Russo, T.: A method for exponential propagation of large systems of stiff nonlinear differential equations. J. Sci. Comput. 4(4), 327–354 (1989)

    Article  MathSciNet  Google Scholar 

  13. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13(5), 1236–1264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, vol. 2. Springer, Berlin (2002). Second revised edition with 137 figures

    Google Scholar 

  15. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43(3), 1069–1090 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203(1), 72–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, Y.: Exponentials of symmetric matrices through tridiagonal reductions. Linear Algebra Appl. 279, 317–324 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, Y.: Computing a matrix function for exponential integrators. J. Comput. Appl. Math. 161(1), 203–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maset, S., Zennaro, M.: Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations. Math. Comput. 78, 957–967 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Minchev, B.: Exponential integrators for semilinear problems. Ph.D. thesis, Department of Informatics, University of Bergen (2004)

  22. Minchev, B.: Integrating factor methods as exponential integrators. In: Proceedings of the 5th International Conference on Large-Scale Scientific Computing, LSSC’05, pp. 380–386. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Minchev, B.: Wright., W.: A review of exponential integrators for first order semi-linear problems. Tech. rep. 2/05, NTNU (2005)

  24. Moler, C., Loan, C.V.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niesen, J., Wright, W.M.: A Krylov subspace algorithm for evaluating the phi-functions appearing in exponential integrators. ACM TOMS 38(3), 22 (2012)

    Article  MathSciNet  Google Scholar 

  26. O’Callaghan, E.: The analysis and implementation of exponential almost Runge-Kutta methods for semilinear problems. Ph.D. thesis, School of Mathematical Sciences, Dublin City University (2011)

  27. Ostermann, A., Thalhammer, M., Wright, W.: A class of explicit exponential general linear methods. BIT Numer. Math. 46(2), 409–431 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmelzer, T.: Talbot quadratures and rational approximations. BIT Numer. Math. 46, 653–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schmelzer, T., Trefethen, L.: Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximations and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin O’Callaghan.

Additional information

Communicated by Mechthild Thalhammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, J., O’Callaghan, E. Exponential almost Runge-Kutta methods for semilinear problems. Bit Numer Math 53, 567–594 (2013). https://doi.org/10.1007/s10543-012-0416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-012-0416-y

Keywords

Mathematics Subject Classification (2010)

Navigation