Skip to main content

Advertisement

Log in

On the need for integrative phylogenomics, and some steps toward its creation

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

Recently improved understanding of evolutionary processes suggests that tree-based phylogenetic analyses of evolutionary change cannot adequately explain the divergent evolutionary histories of a great many genes and gene complexes. In particular, genetic diversity in the genomes of prokaryotes, phages, and plasmids cannot be fit into classic tree-like models of evolution. These findings entail the need for fundamental reform of our understanding of molecular evolution and the need to devise alternative apparatus for integrated analysis of these genomes. We advocate the development of integrative phylogenomics for analyzing these genomes and their histories, with tools suited to analyzing the importance of lateral gene transfer (LGT) and of DNA evolution in extra-cellular mobile genetic elements (e.g., viruses, plasmids). These phenomena greatly increase the complexity of relationships among interacting genetic partners, as they exchange functional genetic units. We examine the ontology of functional genetic units, interacting genetic partners, and emergent genetic associations, argue that these three categories of entities are required for a successful integrated phylogenomics. We conclude with arguments to suggest that the proposed new perspective and associated tools are suitable, and perhaps required, as a replacement for the bifurcating trees that have dominated evolutionary thinking for the last 150 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The degree of similarity between the trees depends on the extent of lateral transfer in the lineage of cells or organisms in question; occasionally such evidence indicates that particular groups of genes have distinct evolutionary histories from those of other groups of genes in the organism.

  2. There can be a hierarchical structure in such a network, but it can only be inferred using computationally demanding methods. There is no a priori reason for such a hierarchy to reflect the genealogy.

  3. These operational taxonomic units were described by Sneath and Sokal to give a rank-free name to the leaves of a phylogenetic tree (Sneath and Sokal 1973). Interpreted thus, molecular OTUs are representative of species, genera, individuals, and so on. Such OTUs have been used extensively to construct phylograms and maximum likelihood trees. One result of this use is that ‘OTU’ is now-standard term in molecular phylogenetics for leaves (or terminal taxa) on a tree.

  4. ‘Assortative’ is a term for networks in which partners with many connections connect preferentially with each other, rather than with partners with few interactions.

  5. Identification of genetic complexes inherited or transferred as a unit does not suffice to determine their evolutionary fate. Whether they achieve (or have achieved) the status of being a causally relevant evolutionary unit requires a diachronic analysis, which no synchronic categorization, by itself, can provide.

References

  • Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG et al (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51

    Article  Google Scholar 

  • Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA 101(Suppl 2):14572–14579

    Article  Google Scholar 

  • Bapteste E, Susko E, Leigh J, MacLeod D, Charlebois RL, Doolittle WF (2005) Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5(1):33

    Article  Google Scholar 

  • Bapteste E, Susko E, Leigh J, Ruiz-Trillo I, Bucknam J, Doolittle WF (2008) Alternative methods for concatenation of core genes indicate a lack of resolution in deep nodes of the prokaryotic phylogeny. Mol Biol Evol 25(1):83–91

    Article  Google Scholar 

  • Bapteste E, O’Malley M, Beiko RG, Ereshefsky M, Gogarten JP et al (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4:34

    Article  Google Scholar 

  • Beatty J (1985) Speaking of Species: Darwin’s Strategy In: Kohn D (ed) Darwinian Heritage. Princeton. NJ, Princeton University Press, pp 265–282

    Google Scholar 

  • Beiko RG, Ragan MA (2009) Untangling hybrid phylogenetic signals: horizontal gene transfer and artifacts of phylogenetic reconstruction. Methods Mol Biol 532:241–256

    Article  Google Scholar 

  • Beiko RG, Doolittle WF, Charlebois RL (2008) The impact of reticulate evolution on genome phylogeny. Syst Biol 57(6):844–856

    Article  Google Scholar 

  • Blaiotta G, Ercolini D, Simeoli E, Moschetti G, Villani F (2000) Conditions for conjugative transposon transfer in Lactococcus lactis. Lett Appl Microbiol 31(5):343–348

    Article  Google Scholar 

  • Boucher Y, Bapteste E (2009) Revisiting the concept of lineage in prokaryotes: a phylogenetic perspective. BioEssays 31(5):526–536

    Article  Google Scholar 

  • Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME et al (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37:283–328

    Article  Google Scholar 

  • Boucher Y, Labbate M, Koenig JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15(7):301–309

    Article  Google Scholar 

  • Bouvier M, Demarre G, Mazel D (2005) Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J 24(24):4356–4367

    Article  Google Scholar 

  • Brazelton WJ, Baross JA (2009) Abundant transposases encoded by the metagenome of a hydrothermal chimney biofilm. ISME J (Epub ahead of print)

  • Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Lio P, Fani R (2008) Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics 9:551

    Article  Google Scholar 

  • Brussow H (2009) The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond B Biol Sci 364(1527):2263–2274

    Article  Google Scholar 

  • Buss LW (1987) The Evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Ciccarelli F, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life’. Science 311(5765):1283–1287

    Article  Google Scholar 

  • Cvitkovitch DG, Li YH, Ellen RP (2003) Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest 112(11):1626–1632

    Google Scholar 

  • Dagan T, Martin W (2006) The tree of one percent. Genome Biol 7:118

    Article  Google Scholar 

  • Dagan T, Martin W (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104(3):870–875

    Article  Google Scholar 

  • Dagan T, Martin W (2009) Getting a better picture of microbial evolution en route to a network of genomes. Philos Trans R Soc Lond B Biol Sci 364(1527):2187–2196

    Article  Google Scholar 

  • Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA 105(29):10039–10044

    Article  Google Scholar 

  • Darwin CR (1964 [1859]) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. In: E. Mayr (ed) A facsimile of the first edition, with an introduction. Harvard University Press, Cambridge

  • Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 24(6):332–340

    Article  Google Scholar 

  • DeLong EF (2007) Microbiology. Life on the thermodynamic edge. Science 317(5836):327–328

    Article  Google Scholar 

  • Denker E, Bapteste E, Le Guyader H, Manuel M, Rabet N (2008) Horizontal gene transfer and the evolution of cnidarian stinging cells. Curr Biol 18(18):R858–R859

    Article  Google Scholar 

  • Doolittle WF (2009a) Eradicating typological thinking in prokaryotic systematics and evolution. In: Cold Spring Harbor symposium on quantitative biology. (Epub ahead of print)

  • Doolittle WF (2009b) The practice of classification and the theory of evolution, and what the demise of Charles Darwin’s tree of life hypothesis means for both of them. Philos Trans R Soc Lond B Biol Sci 364(1527):2221–2228

    Article  Google Scholar 

  • Doolittle WF, Nesbo CL, Bapteste E, Zhaxybayeva O (2007) Lateral gene transfer. Evolutionary genomics and proteomics. Sinauer, Sunderland

    Google Scholar 

  • Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186(5):1518–1530

    Article  Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer, Sunderland

    Google Scholar 

  • Filee J, Forterre P, Laurent J (2003) The role played by viruses in the evolution of their hosts: a view based on informational protein phylogenies. Res Microbiol 154(4):237–243

    Article  Google Scholar 

  • Filee J, Tetart F, Suttle CA, Krisch HM (2005) Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci USA 102(35):12471–12476

    Article  Google Scholar 

  • Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40(2):151–160

    Article  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315(5811):476–480

    Article  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732

    Article  Google Scholar 

  • Galtier N, Daubin V (2008) Dealing with incongruence in phylogenomic analyses. Philos Trans R Soc Lond B Biol Sci 363(1512):4023–4029

    Article  Google Scholar 

  • Ghigo JM (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412(6845):442–445

    Article  Google Scholar 

  • Halary S, Leigh JW, Cheaib B, Lopez P, Bapteste E (2010) Network analyses structure genetic diversity in independent genetic worlds. Proc Natl Acad Sci USA 107(1):127–132

    Article  Google Scholar 

  • Hanage WP, Fraser C, Spratt BG (2006) The impact of homologous recombination on the generation of diversity in bacteria. J Theor Biol 239(2):210–219

    Article  Google Scholar 

  • Hatfull GF, Cresawn SG, Hendrix RW (2008) Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol 159(5):332–339

    Article  Google Scholar 

  • Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages all the world’s a phage. Proc Natl Acad Sci USA 96(5):2192–2197

    Article  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Horike T, Hamada K, Shinozawa T (2002) Origin of eukaryotic cell nuclei by symbiosis of Archaea in bacteria supported by the newly clarified origin of functional genes. Genes Genet Syst 77(5):369–376

    Article  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236(2):163–173

    Google Scholar 

  • Junker BH, Koschutzki D, Schreiber F (2006) Exploration of biological network centralities with CentiBiN. BMC Bioinformatics 7:219

    Article  Google Scholar 

  • Killcoyne S, Carter GW, Smith J, Boyle J (2009) Cytoscape: a community-based framework for network modeling. Methods Mol Biol 563:219–239

    Article  Google Scholar 

  • Klieve AV, Yokoyama MT, Forster RJ, Ouwerkerk D, Bain PA, Mawhinney EL (2005) Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin. Appl Environ Microbiol 71(8):4248–4253

    Article  Google Scholar 

  • Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37(4):1011–1034

    Article  Google Scholar 

  • Koonin EV, Wolf YI, Puigbo P (2009) The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harbor symposium on quantitative biology. (Epub ahead of print)

  • Lakatos I (1970) Falsification and the methodology of scientific research programmes. In: Lakatos I, Musgrave A (eds) Criticism and the growth of knowledge. Cambridge University Press, Cambridge, pp 91–230

    Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Lane CE, Archibald JM (2008) The eukaryotic tree of life: endosymbiosis takes its TOL Trends. Ecol Evol 23(5):268–275

    Article  Google Scholar 

  • Lapointe FJ, Lopez P, Boucher Y, Koenig J, Bapteste E (2010) Clanistics: a multi-level perspective for harvesting unrooted gene trees. Trends Micro (in press)

  • Li N, Cannon MC (1998) Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 180(9):2450–2458

    Google Scholar 

  • Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Reticulate representation of evolutionary and functional relationships between phage genomes. Mol Biol Evol 25(4):762–777

    Article  Google Scholar 

  • Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438(7064):86–89

    Article  Google Scholar 

  • Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433(7028):865–868

    Article  Google Scholar 

  • Loo CY, Corliss DA, Ganeshkumar N (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182(5):1374–1382

    Article  Google Scholar 

  • Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. C R Biol 332(2–3):171–182

    Article  Google Scholar 

  • Mallet J (2010) Why was Darwin’s view of species rejected by 20th century biologists? Biol Phil (this issue)

  • Marri PR, Hao W, Golding GB (2007) The role of laterally transferred genes in adaptive evolution. BMC Evol Biol 7(Suppl 1):S8

    Article  Google Scholar 

  • Martin W, Embley TM (2004) Evolutionary biology: early evolution comes full circle. Nature 431(7005):134–137

    Article  Google Scholar 

  • Mayr E (1964) From molecules to organic diversity. Fed Proc 23:1231–1235

    Google Scholar 

  • Mayr E (1968) The role of systematics in biology. Science 159(815):595–599

    Article  Google Scholar 

  • Mitreva M, Blaxter ML, Bird DM, McCarter JP (2005) Comparative genomics of nematodes. Trends Genet 21(10):573–581

    Article  Google Scholar 

  • Norman A, Hansen LH, Sorensen SJ (2009) Conjugative plasmids: vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 364(1527):2275–2289

    Article  Google Scholar 

  • Nystedt B, Frank AC, Thollesson M, Andersson SG (2008) Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol 25(2):287–300

    Article  Google Scholar 

  • O’Hara RJ (1997) Population thinking and tree thinking in systematics. Zool Scr 26(4):323–329

    Article  Google Scholar 

  • Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA et al (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113(2):171–182

    Article  Google Scholar 

  • Perez-Losada M, Browne EB, Madsen A, Wirth T, Viscidi RP, Crandall KA (2006) Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) dat. Infect Genet Evol 6(2):97–112

    Article  Google Scholar 

  • Ragan MA, McInerney JO, Lake JA (2009) The network of life: genome beginnings and evolution. Introduction. Philos Trans R Soc Lond B Biol Sci 364(1527):2169–2175

    Article  Google Scholar 

  • Roberts AP, Cheah G, Ready D, Pratten J, Wilson M, Mullany P (2001) Transfer of TN916-like elements in microcosm dental plaques. Antimicrob Agents Chemother 45(10):2943–2946

    Article  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459(7244):207–212

    Article  Google Scholar 

  • Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3(5):380–390

    Article  Google Scholar 

  • Sharma AK, Walsh DA, Bapteste E, Rodriguez-Valera F, Doolittle WF, Papke RT (2007) Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 18(7):79

    Article  Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105(7):2510–2515

    Article  Google Scholar 

  • Sneath RR, Sokal PHA (1973) Numerical Taxonomy. W.H. Freeman, San Francisco

    Google Scholar 

  • Susko E, Leigh J, Doolittle WF, Bapteste E (2006) Visualizing and assessing phylogenetic congruence of core gene sets: a case study of the gamma-proteobacteria. Mol Biol Evol 23(5):1019–1030

    Article  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344

    Article  Google Scholar 

  • Van Melderen L, Saavedra De Bast M (2009) Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet 5(3):e1000437

    Article  Google Scholar 

  • Villarreal LP, Witzany G (2009) Viruses are essential agents within the roots and stem of the tree of life. J TheorBiol (Epub ahead of print)

  • Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50(3):967–976

    Article  Google Scholar 

  • Welch RA, Burland V, Plunkett G 3rd, Redford P, Roesch P, Rasko D et al (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99(26):17020–17024

    Article  Google Scholar 

  • Wilkinson M, McInerney JO, Hirt RP, Foster PG, Embley TM (2007) Of clades and clans: terms for phylogenetic relationships in unrooted trees. Trends Ecol Evol 22(3):114–115

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) ‘Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579

    Article  Google Scholar 

  • Xiang X, Chen L, Huang X, Luo Y, She Q, Huang L (2005) Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J Virol 79(14):8677–8686

    Article  Google Scholar 

  • Zhao Y, Wang K, Budinoff C, Buchan A, Lang A, Jiao N, Chen F (2009) Gene transfer agent (GTA) genes reveal diverse and dynamic Roseobacter and Rhodobacter populations in the Chesapeake Bay. ISME J 3(3):364–373

    Article  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16(9):1099–1108

    Article  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366

    Article  Google Scholar 

Download references

Acknowledgments

We thank the “Questioning the Tree of Life” project, sponsored by the Leverhulme Trust, for encouraging this contribution. EB thanks J. Leigh, P. Lopez, S. Halary, F.J. ‘Quick’ Lapointe and Y. Boucher for stimulating discussions; RB thanks J. Jelesko, R. Jensen, B. Mukhopadhyay, and J. Sebutal for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bapteste.

Additional information

This paper has its roots in the fertile research fields masterfully sown by Ford Doolittle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bapteste, E., Burian, R.M. On the need for integrative phylogenomics, and some steps toward its creation. Biol Philos 25, 711–736 (2010). https://doi.org/10.1007/s10539-010-9218-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-010-9218-2

Keywords

Navigation