Skip to main content
Log in

Insights on the endogenous labile iron pool binding properties

  • Research
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Under normal physiological conditions, the endogenous Labile Iron Pool (LIP) constitutes a ubiquitous, dynamic, tightly regulated reservoir of cellular ferrous iron. Furthermore, LIP is loaded into new apo-iron proteins, a process akin to the activity of metallochaperones. Despite such importance on iron metabolism, the LIP identity and binding properties have remained elusive. We hypothesized that LIP binds to cell constituents (generically denoted C) and forms an iron complex termed CLIP. Combining this binding model with the established Calcein (CA) methodology for assessing cytosolic LIP, we have formulated an equation featuring two experimentally quantifiable parameters (the concentrations of the cytosolic free CA and CA and LIP complex termed CALIP) and three unknown parameters (the total concentrations of LIP and C and their thermodynamic affinity constant Kd). The fittings of cytosolic CALIP × CA concentrations data encompassing a few cellular models to this equation with floating unknown parameters were successful. The computed adjusted total LIP (LIPT) and C (CT) concentrations fall within the sub-to-low micromolar range while the computed Kd was in the 10−2 µM range for all cell types. Thus, LIP binds and has high affinity to cellular constituents found in low concentrations and has remarkably similar properties across different cell types, shedding fresh light on the properties of endogenous LIP within cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Quadratic equation:

    $$[{\text{CALIP}}]^{2} \;-({\text{K}}_{{{\text{CA}}}}^{{ - 1}} {{ + }}[{\text{CA}}_{{\text{T}}} ] + [{\text{LIP}}_{{\text{T}}} ])[{\text{CALIP}}] + [{\text{CA}}_{{\text{T}}} ][{\text{LIP}}_{{\text{T}}} ] = 0$$

    Solution:

    $$\begin{gathered} \left[ {{\text{CALIP}}} \right] = \left( {{\text{K}}_{{{\text{CA}}}}^{-1} + [{\text{CA}}_{{\text{T}}} ] + [{\text{LIP}}_{{\text{T}}} ]} \right)-{\text{ }}\sqrt[2]{{\left( {{\text{K}}_{{{\text{CA}}}}^{-1} + [{\text{CA}}_{{\text{T}}} ] + [{\text{LIP}}_{{\text{T}}} ]} \right)^{2} -(4}}[{\text{CA}}_{{\text{T}}} \left] {} \right[{\text{LIP}}_{{\text{T}}} ])/2. \hfill \\ \end{gathered}$$

    The second solution returned negative value for KCA.

  2. $$\text{Quadratic equation:}\,[{\text{CALIP}}]^{2} + ({\text{K}}_{{\text{d}}} {\text{K}}_{{{\text{CA}}}} \left[ {{\text{CA}}} \right] + [{\text{C}}_{{\text{T}}} ]-[{\text{LIP}}_{{\text{T}}} ])[{\text{CALIP}}]-{\text{K}}_{{\text{d}}} {\text{K}}_{{{\text{CA}}}} \left[ {{\text{CA}}} \right][{\text{LIP}}_{{\text{T}}} ] = 0.$$
    $$\text{Solution}: \left[ {{\text{CALIP}}} \right] = \frac{{ - ({\text{K}}_{{\text{d}}} {\text{K}}_{{{\text{CA}}}} \left[ {{\text{CA}}} \right] + [{\text{C}}_{{\text{T}}} ]-[{\text{LIP}}_{{\text{T}}} ]) + \sqrt{{({\text{K}}_{{\text{d}}} {\text{K}}_{{{\text{CA}}}} \left[ {{\text{CA}}} \right] + [{\text{C}}_{{\text{T}}} ][{\text{LIP}}_{{\text{T}}} ])^{2} ( - 4{\text{K}}_{{\text{d}}} {\text{K}}_{{{\text{CA}}}} [{\text{CA}}][{\text{LIP}}_{{\text{T}}} ])}}}}{2}.$$

    It was assumed that “free” [LIP] is negligible to the sum of [CLIP] + [CALIP] under the experimental conditions. This is justified by the finding that the hexaaqua Fe(II) complex is not LIP. The second solution returned negative unacceptable values for CT and/or Kd.

References

  • Allen S, Badarau A, Dennison C (2012) Cu(I) affinities of the domain 1 and 3 sites in the human metallochaperone for Cu,Zn-Superoxide dismutase. Biochemistry 51:1439–1448

    Article  CAS  PubMed  Google Scholar 

  • Bosworth C, Toledo J, Zmijewski J, Li Q, Lancaster J (2009) Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc Natl Acad Sci USA 106:4671–4676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer W, Epsztejn S, Cabantchik Z (1995) Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(Ii). J Biol Chem 270:24209–24215

    Article  CAS  PubMed  Google Scholar 

  • Breuer W, Epsztejn S, Cabantchik Z (1996) Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett 382:304–308

    Article  CAS  PubMed  Google Scholar 

  • Cabantchik Z, Kakhlon O (2002) Regulation of ferritin expression affects the labile iron pool and modulates oncogene stimulated cell growth. Free Radic Biol Med 33:S105–S105

    Google Scholar 

  • Camarena V, Huff TC, Wang G (2021) Epigenomic regulation by labile iron. Free Radic Biol Med 170:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantini F, Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Huffman D, O’Halloran T (2001) Characterization of the binding interface between the copper chaperone Atx1 and the first cytosolic domain of Ccc2 ATPase. J Inorg Biochem 86:498–498

    Google Scholar 

  • Cho EA, Song HK, Lee SH, Chung BH, Lim HM, Lee MK (2013) Differential in vitro and cellular effects of iron chelators for hypoxia inducible factor hydroxylases. J Cell Biochem 114:864–873

    Article  CAS  PubMed  Google Scholar 

  • Chutvanichkul B, Vattanaviboon P, Mas-Oodi S, U-Pratya Y, Wanachiwanawin W (2018) Labile iron pool as a parameter to monitor iron overload and oxidative stress status in-thalassemic erythrocytes. Cytometry Part B-Clinical Cytometry 94:631–636

    Article  CAS  PubMed  Google Scholar 

  • Condeles AL, Toledo JC (2021) The labile iron pool reacts rapidly and catalytically with peroxynitrite. Biomolecules. https://doi.org/10.3390/biom11091331

    Article  PubMed  PubMed Central  Google Scholar 

  • Culotta V, Klomp L, Strain J, Casareno R, Krems B, Gitlin J (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472

    Article  CAS  PubMed  Google Scholar 

  • Damasceno F, Condeles A, Lopes A, Facci R, Linares E, Truzzi D, Augusto O, Toledo J (2018) The labile iron pool attenuates peroxynitrite-dependent damage and can no longer be considered solely a pro-oxidative cellular iron source. J Biol Chem 293:8530–8542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devos D et al (2020) Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J Neural Transm (Vienna) 127:189–203

    Article  CAS  PubMed  Google Scholar 

  • Egyed A (1984) Iron is maintained as Fe(ii) under aerobic conditions in erythroid-cells. Biol Trace Elem Res 6:357–364

    Article  CAS  PubMed  Google Scholar 

  • Eisses J, Stasser J, Ralle M, Kaplan J, Blackburn N (2000) Domains I and III of the human copper chaperone for superoxide dismutase interact via a cysteine-bridged dicopper(I) cluster. Biochemistry 39:7337–7342

    Article  CAS  PubMed  Google Scholar 

  • Epsztejn S, Kakhlon O, Glickstein H, Breuer W, Cabantchik Z (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal Biochem 248:31–40

    Article  CAS  PubMed  Google Scholar 

  • Fargion S, Valenti L, Fracanzani AL (2011) Beyond hereditary hemochromatosis: new insights into the relationship between iron overload and chronic liver diseases. Dig Liver Dis 43:89–95

    Article  PubMed  Google Scholar 

  • Frey A et al (2014) Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proc Natl Acad Sci USA 111:8031–8036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio S, Linares E, Ischiropoulos H, Von Zuben FJ, Yamada A, Augusto O (1998) In vivo formation of electron paramagnetic resonance-detectable nitric oxide and of nitrotyrosine is not impaired during murine leishmaniasis. Infect Immun 66:807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumienna-Kontecka E, Pyrkosz-Bulska M, Szebesczyk A, Ostrowska M (2014) Iron chelating strategies in systemic metal overload, neurodegeneration and cancer. Curr Med Chem 21:3741–3767

    Article  CAS  PubMed  Google Scholar 

  • Hanudel MR (2023) Filling the pool: possible renoprotective effects of repleting the kidney macrophage labile iron pool in CKD? Kidney Int 104:21–24

    Article  PubMed  Google Scholar 

  • Hickok JR, Sahni S, Shen H, Arvind A, Antoniou C, Fung LW, Thomas DD (2011) Dinitrosyliron complexes are the most abundant nitric oxide-derived cellular adduct: biological parameters of assembly and disappearance. Free Radic Biol Med 51:1558–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hider R, Kong X (2011) Glutathione: a key component of the cytoplasmic labile iron pool. Biometals 24:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Huffman D, O’Halloran T (2000) Energetics of copper trafficking between the Atx1 metallochaperone and the intracellular copper transporter, Ccc2. J Biol Chem 275:18611–18614

    Article  CAS  PubMed  Google Scholar 

  • Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imoto S, Sawamura T, Shibuya Y, Kono M, Ohbuchi A, Suzuki T, Mizokoshi Y, Saigo K (2022) Labile iron, ROS, and cell death are prominently induced by haemin, but not by non-transferrin-bound iron. Transfus Apher Sci 61:103319

    Article  PubMed  Google Scholar 

  • Kakhlon O, Gruenbaum Y, Cabantchik Z (2001) Repression of the heavy ferritin chain increases the labile iron pool of human K562 cells. Biochem J 356:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH (1998) Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis volume 10, number 11, november 1997, pp 1285-1292. Chem Res Toxicol 10:1285–1292

    Article  Google Scholar 

  • Konijn A, Glickstein H, Vaisman B, Meyron-Holtz E, Slotki I, Cabantchik Z (1999) The cellular labile iron pool and intracellular ferritin in K562 cells. Blood 94:2128–2134

    Article  CAS  PubMed  Google Scholar 

  • Kruszewski M, Starzynski R, Bartlomiejczyk T, Drapier J, Smuda E, Lipinsky P (2002) Modulation of IRP1 by NO: an unexpected correlation between RNA-binding activity of IRP1 and labile iron pool. Free Radic Biol Med 33:S378–S379

    Google Scholar 

  • Li Q, Li C, Mahtani H, Du J, Patel A, Lancaster J (2014) Nitrosothiol formation and protection against Fenton Chemistry by nitric oxide-induced Dinitrosyliron Complex formation from Anoxia-initiated Cellular Chelatable Iron increase. J Biol Chem 289:19917–19927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski P, Starzynski R, Drapier J, Bouton C, Bartlomiejczyk T, Sochanowicz B, Smuda E, Gajkowska A, Kruszewski M (2005) Induction of iron regulatory protein 1 RNA-binding activity by nitric oxide is associated with a concomitant increase in the labile iron pool: implications for DNA damage. Biochem Biophys Res Commun 327:349–355

    Article  CAS  PubMed  Google Scholar 

  • McNeill L, Flashman E, Buck M, Hewitson K, Clifton I, Jeschke G, Claridge T, Ehrismann D, Oldham N, Schofield C (2005) Hypoxia-inducible factor prolyl hydroxylase 2 has a high affinity for ferrous iron and 2-oxoglutarate. Mol Biosyst 1:321–324

    Article  CAS  PubMed  Google Scholar 

  • Nandal A, Ruiz J, Subramanian P, Ghimire-Rijal S, Sinnamon R, Stemmler T, Bruick R, Philpott C (2011) Activation of the HIF Prolyl hydroxylase by the Iron chaperones PCBP1 and PCBP2. Cell Metabol 14:647–657

    Article  CAS  Google Scholar 

  • Niwa M, Hirayama T, Oomoto I, Wang DO, Nagasawa H (2018) Fe(II) ion release during endocytotic uptake of iron visualized by a membrane-anchoring Fe(II) fluorescent probe. ACS Chem Biol 13:1853–1861

    Article  CAS  PubMed  Google Scholar 

  • Omiya S et al (2009) Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol 46:59–66

    Article  CAS  PubMed  Google Scholar 

  • Pasquini M, Grosjean N, Hixson K, Nicora C, Yee E, Lipton M, Blaby I, Haley J, Blaby-Haas C (2022) Zng1 is a GTP-dependent zinc transferase needed for activation of methionine aminopeptidase. Cell Rep 39:110834

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Frey A, Palenchar D, Achar S, Bullough K, Vashisht A, Wohlschlegel J, Philpott C (2019) A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol 15:872–

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patino E et al (2023) Iron therapy mitigates chronic kidney disease progression by regulating intracellular iron status of kidney macrophages. JCI Insight. https://doi.org/10.1172/jci.insight.159235

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrat F, de Groot H, Sustmann R, Rauen U (2002) The chelatable iron pool in living cells: a methodically defined quantity. Biol Chem 383:489–502

    Article  CAS  PubMed  Google Scholar 

  • Philpott C, Patel S, Protchenko O (2020) Management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones. Biochimica Et Biophysica Acta-Mol Cell Res 1867:118830

    Article  CAS  Google Scholar 

  • Philpott CC, Protchenko O, Wang Y, Novoa-Aponte L, Leon-Torres A, Grounds S, Tietgens AJ (2023) Iron-tracking strategies: chaperones capture iron in the cytosolic labile iron pool. Front Mol Biosci 10:1127690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard V, Epsztejn S, Santambrogio P, Cabantchik Z, Beaumont C (1998) Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. J Biol Chem 273:15382–15386

    Article  CAS  PubMed  Google Scholar 

  • Ponka P, Borova J, Neuwirt J, Fuchs O (1979) Study of intracellular iron-metabolism using pyridoxal isonicotinoyl hydrazone and other synthetic chelating-agents. Biochim Biophys Acta 586:278–297

    Article  CAS  PubMed  Google Scholar 

  • Rouault T (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2:406–414

    Article  CAS  PubMed  Google Scholar 

  • Roy C, Blemings K, Deck K, Davies P, Anderson E, Eisenstein R, Enns C (2002) Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells. J Cell Physiol 190:218–226

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Bencze K, Stemmler T, Philpott C (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320:1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AMN, Rangel M (2022) The (bio)chemistry of non-transferrin-bound iron. Molecules. https://doi.org/10.3390/molecules27061784

    Article  PubMed  PubMed Central  Google Scholar 

  • Simcox J, McClain D (2013) Iron diabetes risk. Cell Metab 17:329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185:2401–2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stomberski CT, Hess DT, Stamler JS (2019) Protein S-nitrosylation: determinants of specificity and enzymatic regulation of S-nitrosothiol-based signaling. Antioxid Redox Signal 30:1331–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo J, Bosworth C, Hennon S, Mahtani H, Bergonia H, Lancaster J (2008) Nitric oxide-induced conversion of cellular chelatable iron into macromolecule-bound paramagnetic dinitrosyliron complexes. J Biol Chem 283:28926–28933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truzzi D, Augusto O, Ford P (2019) Thiyl radicals are co-products of dinitrosyl iron complex (DNIC) formation. Chem Commun 55:9156–9159

    Article  CAS  Google Scholar 

  • Truzzi D, Medeiros N, Augusto O, Ford P (2021) Dinitrosyl iron complexes (DNICs). From spontaneous assembly to biological roles. Inorg Chem 60:15835–15845

    Article  CAS  PubMed  Google Scholar 

  • Veiga N, Torres J, Mansell D, Freeman S, Domínguez S, Barker CJ, Díaz A, Kremer C (2009) Chelatable iron pool: inositol 1,2,3-trisphosphate fulfils the conditions required to be a safe cellular iron ligand. J Biol Inorg Chem 14:51–59

    Article  CAS  PubMed  Google Scholar 

  • Vithayathil AJ, Ternberg JL, Commoner B (1965) Changes in electron spin resonance signals of rat liver during chemical carcinogenesis. Nature 207:1246–1249

    Article  CAS  PubMed  Google Scholar 

  • Woolum JC, Commoner B (1970) Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 201:131–140

    Article  CAS  PubMed  Google Scholar 

  • Yeoh KK et al (2013) Dual-action inhibitors of HIF prolyl hydroxylases that induce binding of a second iron ion. Org Biomol Chem 11:732–745

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We acknowledge the financial support from FAPESP (2013/07937-8). JCJT is a member of the Research, Innovation and Dissemination Center (RIDC) Redoxoma (FAPESP).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [JCTJ]; Methodology: [JCTJ, ALC, GSS]; Formal analysis and investigation: [ALC, GSS, MBBH]; Writing, review and editing: [JCTJ]; Funding acquisition: [JCTJ], Supervision: [JCTJ].

Corresponding author

Correspondence to José Carlos Toledo Junior.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Condeles, A.L., da Silva, G.S., Hernandes, M.B.B. et al. Insights on the endogenous labile iron pool binding properties. Biometals (2024). https://doi.org/10.1007/s10534-024-00591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10534-024-00591-4

Keywords

Navigation