Skip to main content

Advertisement

Log in

A universal assay for the detection of siderophore activity in natural waters

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Siderophores, a family of biogenic metal chelating agents, play critical roles in the biogeochemical cycling of Fe and other metals by facilitating their solubilization and uptake in circumneutral to alkaline oxic environments. However, because of their small concentrations (ca. nM) and large number of molecular structures, siderophore detection and quantification in environmental samples requires specialized equipment and expertise, and often requires pre-concentration of samples, which may introduce significant bias. The “universal” CAS assay, which was originally designed for use in bacterial cultures, quantifies the iron chelating function of a pool of siderophores but only at concentrations (>2 µM) well above the concentrations estimated to be present in marine, freshwater, and soil samples. In this manuscript, we present a high sensitivity modification of this universal assay (HS-CAS) suitable for detecting and quantifying siderophore activity in the nM concentration range, allowing for direct quantitation of siderophore reactivity in transparent aqueous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed E, Holmström SJM (2014) The effect of soil horizon and mineral type on the distribution of siderophores in soil. Geochim Cosmochim Acta 131:184–195. doi:10.1016/j.gca.2014.01.031

    Article  CAS  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soil 12:39–45

    Article  CAS  Google Scholar 

  • Almaraz N, Whitaker AH, Andrews MY, Duckworth OW (in review) Assessing biomineral formation by iron-oxidizing bacteria in a circumneutral creek

  • Brausam A, van Eldik R (2012) Advances in the mechanistic understanding of selected reactions of transition metal polyaminecarboxylate complexes. In: van Rudi E, Ivana I-B (eds) Advances in inorganic chemistry, vol 64. Academic Press, Cambridge, pp 141–181. doi:10.1016/B978-0-12-396462-5.00005-2

    Google Scholar 

  • Bylund D, Norstrom SH, Essen SA, Lundstrom US (2007) Analysis of low molecular mass organic acids in natural waters by ion exclusion chromatography tandem mass spectrometry. J Chromatogr A 1176:89–93. doi:10.1016/j.chroma.2007.10.064

    Article  CAS  PubMed  Google Scholar 

  • Callahan JH, Cook KD (1984) Mechanism of surfactant-induced changes in the visible spectrometry of metal–chrome azurol s complexes. Anal Chem 56:1632–1640. doi:10.1021/ac00273a022

    Article  CAS  PubMed  Google Scholar 

  • Cervini-Silva J, Kearns J, Banfield J (2012) Steady-state dissolution kinetics of mineral ferric phosphate in the presence of desferrioxamine-B and oxalate ligands at pH 4–6 and T = 24 ± 0.6 °C. Chem Geol 320–321:1–8. doi:10.1016/j.chemgeo.2012.05.022

    Article  CAS  Google Scholar 

  • Crumbliss AL, Harrington JM (2009) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model compounds. Adv Inorg Chem 61:179–250

    Article  CAS  Google Scholar 

  • Csáky TZ, Hassel O, Rosenberg T, Lång S, Turunen E, Tuhkanen A (1948) On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2:450–454. doi:10.3891/acta.chem.scand.02-0450

    Article  Google Scholar 

  • Duckworth OW, Holmstrom SJM, Pena J, Sposito G (2009) Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem Geol 260:149–158

    Article  CAS  Google Scholar 

  • Emerson D (2012) Biogeochemistry and microbiology of microaerobic Fe(II) oxidation. Biochem Soc Trans 40:1211–1216. doi:10.1042/BST20120154

    Article  CAS  PubMed  Google Scholar 

  • Emerson D, Fleming EJ, McBeth JM (2010) Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64:561–583. doi:10.1146/annurev.micro.112408.134208

    Article  CAS  PubMed  Google Scholar 

  • Essen SA, Bylund D, Holmstrom SJ, Moberg M, Lundstrom US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19:269–282. doi:10.1007/s10534-005-8418-8

    Article  CAS  PubMed  Google Scholar 

  • Frausto da Silva JRR, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, Oxford

    Google Scholar 

  • Gimbert LJ, Worsfold PJ (2007) Environmental applications of liquid-waveguide-capillary cells coupled with spectroscopic detection. TrAC Trends Anal Chem 26:914–930. doi:10.1016/j.trac.2007.08.005

    Article  CAS  Google Scholar 

  • Glass J, Orphan V (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol. doi:10.3389/fmicb.2012.00061

    Google Scholar 

  • Gledhill M, Buck KN (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3:69. doi:10.3389/fmicb.2012.00069

    PubMed  PubMed Central  Google Scholar 

  • Gledhill M, McCormack P, Ussher S, Achterberg EP, Mantoura RFC, Worsfold PJ (2004) Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar Chem 88:75–83. doi:10.1016/j.marchem.2004.03.003

    Article  CAS  Google Scholar 

  • Harrington JM, Parker DL, Bargar JR, Jarzecki AA, Tebo BM, Sposito G, Duckworth OW (2012) Structural dependence of Mn complexation by siderophores: donor group dependence on complex stability and reactivity. Geochim Cosmochim Acta 88:106–119. doi:10.1016/j.gca.2012.04.006

    Article  CAS  Google Scholar 

  • Harrington JM, Duckworth OW, Haselwandter K (2015) The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake. Biometals 28:461–472. doi:10.1007/s10534-015-9821-4

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Winkelmann G (1998) Identification and characterization of siderophores of mycorrhizal fungi. Springer Lab Manual Series; Mycorrhiza manual. Springer, Berlin

    Google Scholar 

  • Haselwandter K et al (2006) Basidiochrome—a novel siderophore of the Orchidaceous Mycorrhizal Fungi Ceratobasidium and Rhizoctonia spp. Biometals 19:335–343. doi:10.1007/s10534-006-6986-x

    Article  CAS  PubMed  Google Scholar 

  • Holmström SJM, Lundström US, Finlay RD, Van Hees PAW (2004) Siderophores in forest soil solution. Biogeochemistry 71:247–258

    Article  Google Scholar 

  • Hussein KA, Joo JH (2014) Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils. Curr Microbiol 68:717–723. doi:10.1007/s00284-014-0530-y

    Article  CAS  PubMed  Google Scholar 

  • Jarosz M, Malát M (1988) Spectrophotometric study of the formation of ternary complexes of iron(III) with some triphenylmethane dyes and cationic surfactants. Microchem J 37:268–274. doi:10.1016/0026-265x(88)90136-1

    Article  CAS  Google Scholar 

  • Kem MP, Zane HK, Springer SD, Gauglitz JM, Butler A (2014) Amphiphilic siderophore production by oil-associating microbes. Metallomics 6:1150–1155. doi:10.1039/c4mt00047a

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320. doi:10.1007/bf02602840

    Article  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18. doi:10.1007/s00027-003-0690-5

    Article  CAS  Google Scholar 

  • Kraemer SM, Butler A, Borer P, Cervini-Silva J (2005) Siderophores and the dissolution of iron-bearing minerals in marine systems. Rev Mineral Geochem 59:53–84. doi:10.2138/rmg.2005.59.4

    Article  CAS  Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv Agron 91:1–46. doi:10.1016/s0065-2113(06)91001-3

    Article  CAS  Google Scholar 

  • Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC (2014) Metallophores and Trace Metal Biogeochemistry. Aquat Geochem 21:159–195. doi:10.1007/s10498-014-9246-7

    Article  CAS  Google Scholar 

  • Kraepiel AM, Bellenger JP, Wichard T, Morel FM (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581. doi:10.1007/s10534-009-9222-7

    Article  CAS  PubMed  Google Scholar 

  • Kuhn KM, Maurice PA, Neubauer E, Hofmann T, von der Kammer F (2014) Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. Environ Sci Technol 48:1015–1022. doi:10.1021/es404186v

    Article  CAS  PubMed  Google Scholar 

  • Kustka AB, Jones BM, Hatta M, Field MP, Milligan AJ (2015) The influence of iron and siderophores on eukaryotic phytoplankton growth rates and community composition in the Ross Sea. Mar Chem 173:195–207. doi:10.1016/j.marchem.2014.12.002

    Article  CAS  Google Scholar 

  • Langmyhr FJ, Klausen KS (1963) Complex formation of iron (III) with chrome azurol s. Anal Chim Acta 29:149–167. doi:10.1016/s0003-2670(00)88596-7

    Article  CAS  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535. doi:10.1007/s11104-009-0039-5

    Article  CAS  Google Scholar 

  • Machuca A, Navias D, Milagres AMF, Chavez D, Guillen Y (2014) Effects of metal ions (Cd2+, Cu2+, Zn2+) on the growth and chelating-compound production of three ectomycorrhizal fungi. Interciencia 39:221–227

    Google Scholar 

  • Macrellis HM, Trick CG, Rue EL, Smith G, Bruland KW (2001) Collection and detection of natural iron-binding ligands from seawater. Mar Chem 76:175–187. doi:10.1016/s0304-4203(01)00061-5

    Article  CAS  Google Scholar 

  • Madison AS, Tebo BM, Luther GW (2011) Simultaneous determination of soluble manganese(III), manganese(II) and total manganese in natural (pore)waters. Talanta 84:374–381. doi:10.1016/j.talanta.2011.01.025

    Article  CAS  PubMed  Google Scholar 

  • Mawji E et al (2008) Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol 42:8675–8680. doi:10.1021/es801884r

    Article  CAS  PubMed  Google Scholar 

  • Moberg M, Holmstrom SJ, Lundstrom US, Markides KE (2003) Novel approach to the determination of structurally similar hydroxamate siderophores by column-switching capillary liquid chromatography coupled to mass spectrometry. J Chromatogr A 1020:91–97. doi:10.1016/s0021-9673(03)01236-6

    Article  CAS  PubMed  Google Scholar 

  • Mucha P, Rekowski P, Kosakowska A, Kupryszewski G (1999) Separation of siderophores by capillary electrophoresis. J Chromatogr A 830:183–189. doi:10.1016/s0021-9673(98)00907-8

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731. doi:10.1146/annurev.bi.50.070181.003435

    Article  CAS  PubMed  Google Scholar 

  • Parker DL, Sposito G, Tebo BM (2004) Manganese (III) binding to a pyoverdine siderophore produced by a manganese (II)-oxidizing bacterium. Geochim Cosmochim Acta 68:4809–4820

    Article  CAS  Google Scholar 

  • Połedniok J, Szpikowska-Sroka B (2012) Spectrophotometric study of colour reaction of vanadium(IV) with chrome azurol s in the presence of cationic and non-ionic surfactants. J Anal Chem 68:45–49. doi:10.1134/s1061934813010085

    Article  CAS  Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834. doi:10.1038/287833a0

    Article  CAS  Google Scholar 

  • Pytlakowska K, Zerzucha P, Czoik R (2011) Influence of mixed cationic–nonionic surfactant systems on the spectral properties of ci mordant blue 29 and its complexes with iron(III). Anal Sci 27:555–560

    Article  CAS  PubMed  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142. doi:10.1017/s0953756202006548

    Article  CAS  Google Scholar 

  • Ribas X, Salvado V, Valiente M (1989) The chemistry of iron in biosystems. II: a hydrolytic model of the complex formation between iron(III) and citric acid in aqueous solutions. J Chem Res 1989:2533–2553

    Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225. doi:10.1016/s0065-2113(08)00404-5

    Article  CAS  Google Scholar 

  • Roden EE et al (2012) The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbiol 3:172. doi:10.3389/fmicb.2012.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. doi:10.1111/j.1462-2920.2011.02556.x

    Article  CAS  PubMed  Google Scholar 

  • Schenkeveld WD, Oburger E, Gruber B, Schindlegger Y, Hann S, Puschenreiter M, Kraemer SM (2014) Metal mobilization from soils by phytosiderophores—experiment and equilibrium modeling. Plant Soil 383:59–71. doi:10.1007/s11104-014-2128-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381. doi:10.1126/science.216.4553.1376

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Semb A, Langmyhr FJ (1966) Complex formation of copper(II) with chrome azurol s. Anal Chim Acta 35:286–292. doi:10.1016/s0003-2670(01)81678-0

    Article  CAS  Google Scholar 

  • Shenker M, Hadar Y, Chen Y (1995) Rapid method for accurate determination of colorless siderophores and synthetic chelates. Soil Sci Soc Am J 59:1612–1618

    Article  CAS  Google Scholar 

  • Shenker M, Hadar Y, Chen Y (1999) Kinetics of iron complexing and metal exchange in solutions by rhizoferrin, a fungal siderophore. Soil Sci Soc Am J 63:1681–1687

    Article  CAS  Google Scholar 

  • Siebner-Freibach H, Hadar Y, Chen Y (2004) Interaction of iron chelating agents with clay minerals. Soil Sci Soc Am J 68:470–480

    Article  CAS  Google Scholar 

  • Sorichetti RJ, Creed IF, Trick CG (2014) The influence of iron, siderophores and refractory DOM on cyanobacterial biomass in oligotrophic lakes. Freshw Biol 59:1423–1436. doi:10.1111/fwb.12355

    Article  CAS  Google Scholar 

  • Sowers TD, Harrington JM, Polizzotto ML, Duckworth OW (2016) Sorption of arsenic to biogenic iron (oxyhydr)oxides produced in circumneutral environments. Geochim Cosmochim Acta (in press)

  • Springer SD, Butler A (2016) Microbial ligand coordination: consideration of biological significance. Coord Chem Rev 306:628–635. doi:10.1016/j.ccr.2015.03.013

    Article  CAS  Google Scholar 

  • Stintzi A, Barnes C, Xu L, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci 97:10691–10696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upase AB, Zade AB, Kalbende PP (2011) Spectrophotometric microdetermination of thorium(IV) and uranium(VI) with chrome azurol-s in presence of cationic surfactant. J Chem 8:1132–1141

    CAS  Google Scholar 

  • van der Helm D, Winkelmann G (1994) Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge FR (eds) Metal ions in fungi. M. Dekker, New York, pp 39–98

    Google Scholar 

  • Velasquez I, Nunn BL, Ibisanmi E, Goodlett DR, Hunter KA, Sander SG (2011) Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the South Eastern Coast of New Zealand. Mar Chem 126:97–107. doi:10.1016/j.marchem.2011.04.003

    Article  CAS  Google Scholar 

  • Vestin JLK, Norström SH, Bylund D, Lundström US (2008) Soil solution and stream water chemistry in a forested catchment II: influence of organic matter. Geoderma 144:271–278. doi:10.1016/j.geoderma.2007.11.027

    Article  CAS  Google Scholar 

  • Wei G-Z (1992) A chemical tool for the detection of siderophores. Lamar University, Beaumont

    Google Scholar 

  • Wichard T, Bellenger JP, Loison A, Kraepiel AM (2008) Catechol siderophores control tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter Vinelandii. Environ Sci Technol 42:2408–2413. doi:10.1021/es702651f

    Article  CAS  PubMed  Google Scholar 

  • Yehuda Z, Shenker M, Romheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Physiol 112:1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lauren Saal and Tyler Sowers for assistance in method development and sampling. We thank the North Carolina Agricultural Research Service (02440) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Duckworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, M.Y., Duckworth, O. A universal assay for the detection of siderophore activity in natural waters. Biometals 29, 1085–1095 (2016). https://doi.org/10.1007/s10534-016-9979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9979-4

Keywords

Navigation