Skip to main content
Log in

Speciation of uranium in compartments of living cells

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Depleted uranium used as ammunition corrodes in the environment forming mineral phases and then dissolved uranium species like uranium carbonates (Schimmack et al., in Radiat Environ Biophys 46:221–227, 2007) and hydroxides. These hydroxide species were contacted with plant cells (canola). After 24 h contact time the cells were fractionated and the uranium speciation in the fraction was determined by time resolved laser-induced fluorescence spectroscopy at room temperature as well at 150 K. It could be shown that the uranium speciation in the fractions is different to that in the nutrient solution. Comparison of the emission bands with literature data allows assignment of the uranium binding forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barkleit A et al (2008) Interaction of uranium(VI) with lipopolysaccharide. Dalton Trans 21:2879–2886

    Article  PubMed  Google Scholar 

  • Bell JT, Biggers RE (1965) Absorption spectrum of uranyl ion in Perchlorate media. I. Mathematical resolution of overlapping band structure and studies of environmental effects. J Mol Spectrosc 18:247–275

    Article  CAS  Google Scholar 

  • Bernhard G, Geipel G (2007) Bestimmung der Bindungsformen des Urans in Mineralwässern. Vom Wasser 105(3):7–10

    CAS  Google Scholar 

  • Brachmann A et al (2002) Study of uranyl(VI) malonate complexation by time resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 90:147–149

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brendler V et al (1996) Complexation in the system UO2 2+/PO4 3−/OH (aq) : potentiometric and spectroscopic investigations at very low ionic strengths. Radiochim Acta 74:75–80

    CAS  Google Scholar 

  • Decambox P et al (1991) Direct and fast determination of uranium in human urine samples by laser-induced time-resolved spectrofluorometry. Appl Spectrosc 45:116–118

    Article  CAS  Google Scholar 

  • Frost L et al (2011) Interaction of uranium(VI) towards glutathione—an example to study different functional groups in one molecule. Proc Radiochem A Suppl Radiochim Acta 1:357–362

    Google Scholar 

  • Gabriel U et al (2001) Uranyl surface speciation on silica particles studied by time-resolved laser-induced fluorescence spectroscopy. J Colloid Interface Sci 239:358–368

    Article  CAS  PubMed  Google Scholar 

  • Geipel G (2006) Laser-induced fluorescence spectroscopy. In: Vij DR (ed) Handbook of applied solid state spectroscopy. Springer, New York, pp 577–593

    Chapter  Google Scholar 

  • Geipel G et al (1998) Complex formation between UO2 2+and CO3 2−: studied by laser-induced photoacoustic spectroscopy (LIPAS). Radiochim Acta 82:59–62

    CAS  Google Scholar 

  • Glorius M (2009) Zur Komplexbildung ausgewählter Actiniden (U, Np, Cm) mit mikrobiellen Bioliganden. Ph.D. thesis, TU Dresden

  • Guillaumont R et al (2003) Chemical thermodynamics, vol 5. Elsevier, Amsterdam 246

    Google Scholar 

  • Günther A et al (2003) Uranium speciation in plants. Radiochim Acta 91:319–328

    Article  Google Scholar 

  • Günther A et al (2006) Complex formation of U(VI) with the amino acid l-threonine and the corresponding phosphate ester O-phospho-L-threonine. Radiochim Acta 94:845–851

    Article  Google Scholar 

  • Günther A et al (2011) Luminescence properties of uranium(VI) citrate and uranium(VI) oxalate species and their application in the determination of complex formation constants. Radiochim Acta 99:534–541

    Article  Google Scholar 

  • Koban A et al (2007) Uranium(VI) complexes with phospholipid model compounds—a laser spectroscopic study. J Inorg Biochem 101:750–757

    Article  CAS  PubMed  Google Scholar 

  • Larsson C et al (1994) Isolation of highly purified plant plasma-membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol 228:451–469

    Article  CAS  Google Scholar 

  • Lehmann S et al (2008) A novel time-resolved laser fluorescence spectroscopy system for research on complexation of uranium(IV). Spectrochim Acta A 73:902–908

    Article  Google Scholar 

  • Lütke L et al (2012) A new uranyl benzoate species characterized by different spectroscopic techniques. Radiochim Acta 100:297–303

    Article  Google Scholar 

  • Mihalik J et al (2012) Citrate assisted phytoextraction of uranium by sunflowers: study of fluxes in soils and plants and resulting intra-planta distribution of Fe and U. Environ Exp Bot 77:249–258

    Article  CAS  Google Scholar 

  • Palmgren MG et al (1990) Effect of detergents on the H+-ATPase activity of inside-out and right-side-out plant plasma-membrane vesicles. Biochim Biophys Acta 1021:133–140

    Article  CAS  PubMed  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants—the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31(1):19–48

    Article  CAS  PubMed  Google Scholar 

  • Scapolan S et al (1998) Investigations by time-resolved laser-induced fluorescence and capillary electrophoresis of the uranyl-phosphate species: application to blood serum. J Alloys Compd 271–273:106–111

    Article  Google Scholar 

  • Schimmack W et al (2007) Long-term corrosion and leaching of depleted uranium (DU) in soil. Radiat Environ Biophys 46:221–227

    Article  CAS  PubMed  Google Scholar 

  • Sachs S et al (2007) Uranium(VI) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy. Radiochim Acta 95(2):103–110

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(1):35

    Article  Google Scholar 

  • Viehweger K, Geipel G (2010) Uranium accumulation and tolerance in Arabidopsis halleri under native versus hydroponic conditions. Environ Exp Botany 69:39–46

    Article  CAS  Google Scholar 

  • Wang et al (2004) Cryogenic laser induced fluorescence characterization of U(VI) in hanford vadose zone pore waters. Environ Sci Technol 38:5591–5597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

For providing the spectra of uranium citrate and uranium benzoate A. Günther and H. Moll are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Geipel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geipel, G., Viehweger, K. Speciation of uranium in compartments of living cells. Biometals 28, 529–539 (2015). https://doi.org/10.1007/s10534-015-9836-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-015-9836-x

Keywords

Navigation