Skip to main content
Log in

Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

This study was designed to analyse the effects of human (h) and bovine lactoferrin (bLF) on the growth and differentiation of intestinal cells using the mice model supplemented with Lactoferrin (LF) and the enterocyte-like model of Caco-2 cells which spontaneously differentiate after confluency. In mice, bLF supplementation increased jejunal villus height and the expression of several intestinal brush border membrane enzymes activities. Addition of bLF or hLF to undifferentiated Caco-2 cells was able to increase cell proliferation with confluency being reached more rapidly. Moreover, when Caco-2 cells were grown in the presence of LF for 3 weeks, brush-border membrane-associated enzyme activities i.e. sucrase, alkaline phosphatase and neutral aminopeptidase, as well as the l-glutamate transporter expression were all increased indicating an increased Caco-2 cell differentiation. Accordingly, cDNA Atlas array and Western blot analysis of cell cycle proteins shown a decreased expression of Cdck2 and an increased TAF1 expression; these proteins being implicated in the regulation of numerous genes related to cellular proliferation and differentiation. These modifications were associated with an inhibition of Caco-2 cell spontaneous apoptosis. Altogether, our results indicate that LF increase in vivo and in vitro enterocyte differentiation. In addition, LF was found to increase in vitro enterocyte proliferation resulting in higher cell density in cell flasks, an effect that was likely partly due to a reduction of the cellular apoptosis. The different stimulation patterns observed for the different parameters associated with cell differentiation in relationship with specific gene regulation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akiyama Y, Oshima K, Kuhara T, Shin K, Abe F, Iwatsuki K, Nadano D, Matsuda T (2013) A lactoferrin-receptor, intelectin 1, affects uptake, sub-cellular localization and release of immunochemically detectable lactoferrin by intestinal epithelial Caco-2 cells. J Biochem 154(5):437–448. doi:10.1093/jb/mvt073

    Article  CAS  PubMed  Google Scholar 

  • Aoyagi N, Wassarman DA (2000) Genes encoding Drosophila melanogaster RNA polymerase II general transcription factors: diversity in TFIIA and TFIID components contributes to gene-specific transcriptional regulation. J Cell Biol 150(2):F45–F50

    Article  CAS  PubMed  Google Scholar 

  • Ashida K, Sasaki H, Suzuki Y, Lönnerdal B (2004) Cellular internalization of lactoferrin in intestinal epithelial cells. Biometals 17(3):311–315. doi:10.1023/B:BIOM.0000027710.13543.3f

    Article  CAS  PubMed  Google Scholar 

  • Azuma N, Nori H, Kaminogawa S, Yamauchi K (1989) Stimulatory effect of human lactoferrin on DNA synthesis in BALB/c3T3. Agric Biol Chem 53:31–35

    Article  CAS  Google Scholar 

  • Blais A, Bissonnette P, Berteloot A (1987) Common characteristics for Na+ -dependent sugar transport in Caco-2 cells and human fetal colon. J Membr Biol 99(2):113–125

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Malet A, Mikogami T, Martin-Rouas C, Tomé D (2009) Oral bovine lactoferrin improves bone status of ovariectomized mice. Am J Physiol Endocrinol Metab 296(6):E1281–E1288. doi:10.1152/ajpendo.90938.2008

    Article  CAS  PubMed  Google Scholar 

  • Britigan BE, Serody JS, Cohen MS (1994) The role of lactoferrin as an anti-inflammatory molecule. Adv Exp Med Biol 357:143–156

    Article  CAS  PubMed  Google Scholar 

  • Britton JR, Koldovský O (1989) Gastric luminal digestion of lactoferrin and transferrin by preterm infants. Early Hum Dev 19:127–135

    Article  CAS  PubMed  Google Scholar 

  • Buccigrossi V, de Marco G, Bruzzese E, Ombrato L, Bracale I, Polito G, Guarino A (2007) Lactoferrin induces concentration-dependent functional modulation of intestinal proliferation and differentiation. Pediatr Res 61(4):410–414. doi:10.1203/pdr.0b013e3180332c8d

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidine thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  • Cornish J, Naot D (2010) Lactoferrin as an effector molecule in the skeleton. Biometals 23(3):425–430. doi:10.1007/s10534-010-9320-6

    Article  CAS  PubMed  Google Scholar 

  • Dahlquist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25

    Article  Google Scholar 

  • Damiens E, Mazurier J, El Yazidi I, Masson M, Duthille I, Spik G, Boilly-Marer Y (1998) Effects of human lactoferrin on NK cells cytotoxicity against haematopoietic and tumor epithelial cells. Biochim Biophys Acta 1402:277–287

    Article  CAS  PubMed  Google Scholar 

  • Damiens E, Mazurier J, El Yazidi I, Masson M, Duthille I, Spik G, Boilly-Marer (1999) Lactoferrin inhibits G1 cyclin-dependent kinases during growth arrest of human breast carcinoma cells. J Cell Biochem 74:486–498

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Lonnerdal B (1987) Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 76(5):733–740. doi:10.1111/j.1651-2227.1987

    Article  CAS  PubMed  Google Scholar 

  • Davidson LA, Lonnerdal B (1988) Specific binding of lactoferrin to brush-border membrane: ontogeny and effect of glycan chain. Am J Physiol 254(4):G580–G585

    CAS  PubMed  Google Scholar 

  • Eichholz A (1967) Structural and functional organization of the brush border of epithelial cells. III. Enzymic activities and chemical composition of various fractions of tris-disrupted brush border. Biochim Biophys Acta 135:475–482

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Debbabi H, Blais A, Dubarry M, Rautureau M, Boyaka PN, Tome D (2007) Uptake of ingested bovine lactoferrin and its accumulation in adult mouse tissues. Int Immunopharcol 7:1387–1393

    Article  CAS  Google Scholar 

  • Fleet JC (1995) A new role for lactoferrin: DNA binding and transcription activation. Nutr Rev 53:226–227

    Article  CAS  PubMed  Google Scholar 

  • He H, Furmanski P (1995) Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373:721–724

    Article  CAS  PubMed  Google Scholar 

  • Hu WL, Mazurier J, Sawatzki G, Montreuil J, Spik G (1988) Lactotransferrin receptor of mouse small-intestinal brush border. Binding characteristics of membrane-bound and triton X-100 solubilized froms. Biochem J 249:425–441

    Google Scholar 

  • Hung CM, Yeh CC, Chen HL, Lai CW, Kuo MF, Yeh MH, Lin W, Tu MY, Cheng HC, Chen CM (2010) Porcine lactoferrin administration enhances peripheral lymphocytes proliferation and assists infectious bursal disease vaccination in native chickens. Vaccine 28(16):2895–2902. doi:10.1016/j.vaccine.2010.01.066

    Article  CAS  PubMed  Google Scholar 

  • Hurley WL, Hegarty HM, Metzler JT (1994) Inhibition of mammary cell growth by lactoferrin: a comparative study. Life Sci 55:1955–1963

    Article  CAS  PubMed  Google Scholar 

  • Kawakami H, Lönnerdal B (1991) Isolation and function of a receptor for human lactoferrin in human fetal intestinal brush-border membranes. Am J Physiol 261(5):G841–G846

    CAS  PubMed  Google Scholar 

  • Ko TC, Beauchamp RD, Townsend CM Jr, Thompson EA, Thompson JC (1994) Transforming growth factor-beta inhibits rat intestinal cell growth by regulating cell cycle specific gene expression. Am J Surg 167(1):14–20

    Article  CAS  PubMed  Google Scholar 

  • Kuwata H, Yamauchi K, Teraguchi S, Ushida Y, Shimokawa Y, Toida T, Hayasawa H (2001) Functional fragments of ingested lactoferrin are resistant to proteolytic degradation in the gastrointestinal tract of adult rats. J Nutr 131(8):2121–2127

    CAS  PubMed  Google Scholar 

  • Le Magnen C, Rainard P, Maubois JL, Paraf A, Phan Thanh L (1989) Enzyme linked immunosorbent assay for bovine lactoferrin titration. Le Lait 69:23–28

    Article  Google Scholar 

  • Lee SH, Pyo CW, Hahm DH, Kim J, Choi SY (2009) Iron-saturated lactoferrin stimulates cell cycle progression through PI3K/Akt pathway. Mol Cells 28(1):37–42. doi:10.1007/s10059-009-0102-3

    Article  CAS  PubMed  Google Scholar 

  • Leforestier G, Blais A, Blachier F, Marsset-Baglieri A, Davila-Gay AM, Perrin E, Tomé D (2009) Effects of galacto-oligosaccharide ingestion on the mucosa-associated mucins and sucrase activity in the small intestine of mice. Eur J Nutr 48(8):457–464. doi:10.1007/s00394-009-0036-8

    Article  CAS  PubMed  Google Scholar 

  • Legrand D, Mazurier J (2010) A critical review of the roles of host lactoferrin in immunity. Biometals 23:365–376. doi:10.1007/s10534-010-9297-1

    Article  CAS  PubMed  Google Scholar 

  • Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80(3):252–267

    CAS  PubMed  Google Scholar 

  • Liao Y, Jiang R, Lönnerdal B (2012) Biochemical and molecular impacts of lactoferrin on small intestinal growth and development during early life. Biochem Cell Biol 90(3):476–484. doi:10.1139/o11-075

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao J, Li F, Guo YS, Hellmich MR, Townsend CM Jr, Cao Y, Ko TC (2009) Bombesin enhances TGF-beta growth inhibitory effect through apoptosis induction in intestinal epithelial cells. Regul Pept 158(1–3):26–31. doi:10.1016/j.regpep.2009.07.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lönnerdal B (2009) Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 3:293–297. doi:10.1097/MCO.0b013e328328d13e

  • Lönnerdal B, Iyer S (1995) Lactoferrin: molecular structure and biological function. Ann Rev Nutr 15:93–110

    Article  Google Scholar 

  • Lönnerdal B, Jiang R, Du X (2011) Bovine lactoferrin can be taken up by the human intestinal lactoferrin receptor and exert bioactivities. J Pediatr Gastroenterol Nutr 53(6):606–614. doi:10.1097/MPG.0b013e318230a419

    PubMed  Google Scholar 

  • Malet A, Bournaud E, Lan A, Mikogami T, Tomé D, Blais A (2011) Bovine lactoferrin improves bone status of ovariectomized mice via immune function modulation. Bone 48(5):1028–1035. doi:10.1016/j.bone.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  • Maroux S, Louvard D, Battari J (1973) The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta 321:282–295

    Article  CAS  PubMed  Google Scholar 

  • Massagué J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1(3):169–178

    Article  PubMed  Google Scholar 

  • Mazurier J, Montreuil J, Spik G (1985) Visualization of lactotransferrin brush-border receptors by ligand-blotting. Biochim Biophys Acta 821(3):453–460. doi:10.1016/0005-2736(85)90050-1

    Article  CAS  PubMed  Google Scholar 

  • Mordrelle A, Julian E, Costa C, Cormet-Boyaka E, Benamouzig R, Tomé D, Huneau JF (2000) EAAT1 is involved in transport of l-glutamate during differentiation of Caco-2 cell line. Am J Physiol Gastrointest Liver Physiol 279:G366–G373

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Hino M, Fuyamada H, Hayakawa T, Sakakibara S, Nakagawa T, Takemoto T (1976) New chromogenic substrates for x-prolyl dipeptidyl aminopeptidase. Anal Biochem 74:466–476

    Article  CAS  PubMed  Google Scholar 

  • Naot D, Chhana A, Matthews BG, Callon KE, Tong PC, Lin JM, Costa JL, Watson M, Grey AB, Cornish J (2011) Molecular mechanisms involved in the mitogenic effect of lactoferrin in osteoblasts. Bone 49(2):217–224. doi:10.1016/j.bone.2011.04.002

    Article  CAS  PubMed  Google Scholar 

  • Oguchi S, Walker WA, Sanderson IR (1995) Iron saturation alters the effect of lactoferrin on the proliferation and differentiation of human enterocytes (Caco-2 Cells). Biol Neonate 67:330–339

    Article  CAS  PubMed  Google Scholar 

  • Pierce A, Colavizza D, Benaissa M, Maes P, Tartar A, Montreuil J, Spik G (1991) Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 196(1):177–184

    Article  CAS  PubMed  Google Scholar 

  • Rouet-Benzineb P, Rouyer-Fessard C, Jarry A, Avondo V, Pouzet C, Yanagisawa M, Laboisse C, Laburthe M, Voisin T (2004) Orexins acting at native OX(1) receptor in colon cancer and neuroblastoma cells or at recombinant OX(1) receptor suppress cell growth by inducing apoptosis. J Biol Chem 279(44):45875–45886

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Dignass AU (2008) Epithelial restitution and wound healing in inflammatory bowel disease. World J Gastroenterol 14(3):348–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki T (2013) Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 70:631–659. doi:10.1007/s00018-012-1070-x

    Article  CAS  PubMed  Google Scholar 

  • Suzuki YA, Shin K, Lönnerdal B (2001) Molecularcloning and functional expression of a human intestinal lactoferrin receptor. Biochem 40:15771–15779

    Article  CAS  Google Scholar 

  • Suzuki YA, Lopez V, Lönnerdal B (2005) Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci 62(22):2560–2575

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Cui T, Wu JJ, Liu-Mares W, Huang N, Li J (2010) A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair Regen 18(1):123–131. doi:10.1111/j.1524-475X.2009.00563.x

    Article  PubMed  Google Scholar 

  • Voisin T, El Firar A, Rouyer-Fessard C, Gratio V, Laburthe M (2008) A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism. FASEB J. 22(6):1993–2002. doi:10.1096/fj.07-098723

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shan T, Xu Z, Liu J, Feng J (2006) Effect of lactoferrin on the growth performance, intestinal morphology, and expression of PR-39 and protegrin-1 genes in weaned piglets. J Anim Sci 84(10):2636–2641

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Suzuki N, Takayama T, Arisue M, Kodama T, Yoda Y, Otsuka K, Ito K (2009) Effects of lactoferrin on the differentiation of pluripotent mesenchymal cells. Cell Biol Int 33(3):283–289. doi:10.1016/j.cellbi.2008.11.013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Blais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blais, A., Fan, C., Voisin, T. et al. Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study. Biometals 27, 857–874 (2014). https://doi.org/10.1007/s10534-014-9779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-014-9779-7

Keywords

Navigation