Skip to main content
Log in

Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase?

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Characterized by a photo—catalysis property, nano-anatase TiO2 is closely related to photosynthesis of spinach. It could not only improve light absorbance, transformation from light energy to electron energy and active chemical energy, but also promote the activity of Rubiso activase of spinach. However, the relation between the activity of Rubiso activase and the growth of spinach promoted by nano-anatase TiO2 treatment remains largely unclear. In this study, we find that the amount and the activity of Rubiso activase are obviously increased by nano-anatase TiO2 treatment, which led to the great promotion of Rubsico carboxylation and the high rate of photosynthesis, thus improving of spinach growth. The significant enhancement of Rubiso activase activity of nano-anatase TiO2 treated spinach is also accompanied by conformational changes as determined by spectroscopic analysis. But bulk TiO2 effect is not as significant as nano-anatase TiO2, as the grain size of nano-anatase TiO2 (5 nm) is much smaller than that of bulk TiO2, which entered spinach cell more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Chua NH, Schmidt GW (1979) Transport of proteins into mitochondria and chloroplasts. J Cell Biol 81:461–483

    Article  PubMed  CAS  Google Scholar 

  • Crabtree RH (1998) A new type of hydrogen bond. Science 282:2000–2001

    Article  CAS  Google Scholar 

  • Gao FQ, Hong FS, Liu C, Zheng L, Su MY (2006) Mechanism of Nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of Rubisco–Rubisco activase. Biol Trace Element Res 111:286–301

    Article  Google Scholar 

  • Han Y, Chen G, Wang Z (2000) The progress of studies on Rubisco activase. Chin Bull Botany (in Chinese) 17(4):306–311

    Google Scholar 

  • Hong FS, Yang P, Gao FQ, Liu C, Zheng L, Yang F, Zhou J, (2005a) Effect of nano-TiO2 on spectral characterization of photosystem II particles from spinach. Chem Res Chin Univ 21(2):196–200

    CAS  Google Scholar 

  • Hong FS, Yang F, Ma ZN, Zhou J, Liu C, Wu C, Yang P (2005b) Influences of nano-TiO2 on the chloroplast ageing of spinach under light. Biol Trace Element Res 104(3):249–260

    Article  CAS  Google Scholar 

  • Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005c) Effect of Nano-TiO2 on Photochemical Reaction of Chloroplasts of Spinach. Biol. Trace Element Res 105:1–11 [1] Wang LJ, Guo ZM, Li TJ, Li M (1999) Biomineralized nanostructured materials and plant silicon nutrition. Prog Chem 11:119–128 (in Chinese)

    Google Scholar 

  • Hong FS, Liu C, Zheng L, Wang XF, Wu K, Song WP, Lv SP, Tao Y, Zhao GW, (2005d) Formation of Complexes of Rubisco–Rubisco activase from La3+, Ce3+ treatment spinach. Sci China Ser B Chem 48(1):67–74

    Article  CAS  Google Scholar 

  • Jimenez ESD, Medrano L, Martinez-Barajas E (1995) Rubisco activae, a possible new member of the molecular chaperonefamily. Biochemistry 34:2826–2831

    Article  Google Scholar 

  • Keegstra K, Olsen LJ, Theg. SM (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40:471–501

    Article  CAS  Google Scholar 

  • Kim K, Portis AR (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46(3):522–530

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Lan Y, Meott KA (1991) Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygnase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95:604–609

    PubMed  CAS  Google Scholar 

  • Liu C, Hong FS, Wu K, Ma HB, Zhang XG, Hong CJ, Wu C, Gao FQ, Yang F, Zheng L, Wang XF, Liu T, Xie YN, Xu JH, Li ZR (2006) Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem Biophys Res Commun 342(1):36–43

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Perczel A, Park K, Fasman GD (1992) Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm:A practical guide. Anal Biochem 203:83–89

    Article  PubMed  CAS  Google Scholar 

  • Portis A Jr (1995) The regulation of Rubisco by Rubisco activase. J Expt Bot 46:1285–1291

    CAS  Google Scholar 

  • Portis A Jr, Salvucci ME, Ogren WL (1986) Activation of ribulosebisphosphate carboxylase.oxygenase at physiological CO2 and ribulosebisphosphate concentrations by Rubisco activase. Plant Physiol 82:967–971

    PubMed  CAS  Google Scholar 

  • Robert L, Houtza, Portis A Jr (2003) The life of ribulose-1,5-bisphosphate carboxylase/oxygenase—posttranslational facts and mysteries. Arch Biochem Biophys 414:150–158

    Google Scholar 

  • Robinson SP, Streusand VJ, Chatifield JM, Portis A Jr (1988) Purification and assay of Rubisco activase from leaves. Plant Physiol 88:1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Klein RR (1994) Site-Directed mutagenase of reaction lysyl residue(Lys-247) of Rubisco activase. Arck Biochem Biophys 314:178–185

    Article  CAS  Google Scholar 

  • Sambrook EF, Fritsch T (eds) (1989) Molecular cloning. Cold Spring Laboratory Press, NewYork

    Google Scholar 

  • Spreitzer RJ (1999) Questions about the complexity of chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase. Photosynth Res 60:29–42

    Article  CAS  Google Scholar 

  • Sugiyama T, Nakayama N, Ogawa M, Akazawa T, Oda T (1968) Structure and function of chloroplast proteins: Effect of ρ-Chloromercuribenzoate treatment on the ribulose-1,5-bisphosphate carboxylase/oxygenase activity of Spinach leaf fraction protein. Arch Biochem Biophys 125:98–106

    Article  PubMed  CAS  Google Scholar 

  • Tang RH, Jia JW, Li LR (1997) Purification and characterization of Rubisco activase from tobacco. Acta Phytophysiol Sin (in Chinese) 23:89–95

    CAS  Google Scholar 

  • To KY, Cheng MC, Chen LFO, Chen SCG (1996) Introduction and expression of foreign DNA in isolated spinach chloroplasts by electroporation. Plant J 10:737–743

    Article  PubMed  CAS  Google Scholar 

  • Wang WG, Li LR (1980) A simplified purification method of RuBP carboxylase from spinach leaves. Acta Phytophysiologia Sin (in Chinese) 40(3):256–262

    Google Scholar 

  • Wang LJ, Guo ZM, Li TJ, Li M (1999) Biomineralized nanostructured materials and plant silicon nutrition. Prog Chem (in Chinese) 11:119–128

    CAS  Google Scholar 

  • Yang P, Lu C, Hua N, Du Y (2002) Titanim dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett 57:794–801

    Article  CAS  Google Scholar 

  • Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Element Res 104(1):82–93

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 20671067, 30470150) and by the Jiangsu Province Universities Natural Science Foundation (grant no. 06KJB180094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fashui Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Liu, C., Qu, C. et al. Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase?. Biometals 21, 211–217 (2008). https://doi.org/10.1007/s10534-007-9110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9110-y

Keywords

Navigation