Skip to main content
Log in

Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Copper-transporting ATPase ATP7B (Wilson disease protein) is a member of the P-type ATPase family with characteristic domain structure and distinct ATP-binding site. ATP7B plays a central role in the regulation of copper homeostasis in the liver by delivering copper to the secretory pathway and mediating export of excess copper into the bile. The dual function of ATP7B in hepatocytes is coupled with copper-dependent intracellular relocalization of the transporter. The final destination of ATP7B in hepatocytes during the copper-induced trafficking process is still under debate. We show the results of immunocytochemistry experiments in polarized HepG2 cells that support the model in which elevated copper induces trafficking of ATP7B to sub-apical vesicles, and transiently to the canalicular membrane. In Atp7b -/- mice, an animal model of Wilson disease, both copper delivery to the trans-Golgi network and copper export into the bile are disrupted despite large accumulation of copper in the cytosol. We review the biochemical and physiological changes associated with Atp7b inactivation in mouse liver and discuss the pleiotropic consequences of the common Wilson disease mutation, His1069Gln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N (1998) Copper transport. Am J Clin Nutr 67:965S–971S

    PubMed  CAS  Google Scholar 

  2. Wijmenga C, Klomp LW (2004) Molecular regulation of copper excretion in the liver. Proc Nutr Soc 63:31–9

    Article  PubMed  CAS  Google Scholar 

  3. Prohaska JR, Gybina AA (2004) Intracellular copper transport in mammals. J Nutr 134:1003–6

    PubMed  CAS  Google Scholar 

  4. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–80

    Article  PubMed  CAS  Google Scholar 

  5. O’Halloran TV, Culotta VC (2000) Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–60

    Article  PubMed  Google Scholar 

  6. Xiao Z, Wedd AG (2002) A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chem Commun (Camb) 588–9

  7. Arnesano F, Banci L, Bertini I, Martinelli M (2005) Ortholog search of proteins involved in copper delivery to cytochrome C oxidase and functional analysis of paralogs and gene neighbors by genomic context. J Proteome Res 4:63–70

    Article  PubMed  CAS  Google Scholar 

  8. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J Biol Chem 279:35334–40

    Article  PubMed  CAS  Google Scholar 

  9. Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13:1839–48

    Article  PubMed  CAS  Google Scholar 

  10. Bartnikas TB, Gitlin JD (2003) Mechanisms of biosynthesis of mammalian copper/zinc superoxide dismutase. J Biol Chem 278:33602–8

    Article  PubMed  CAS  Google Scholar 

  11. Casareno RL, Waggoner D, Gitlin JD (1998) The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem 273:23625–8

    Article  PubMed  CAS  Google Scholar 

  12. Wong PC, Waggoner D, Subramaniam JR, Tessarollo L, Bartnikas TB, Culotta VC, Price DL, Rothstein J, Gitlin JD (2000) Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 97:2886–91

    Article  PubMed  CAS  Google Scholar 

  13. Hung IH, Casareno RL, Labesse G, Mathews FS, Gitlin JD (1998) HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273:1749–54

    Article  PubMed  CAS  Google Scholar 

  14. Klomp LW, Lin SJ, Yuan DS, Klausner RD, Culotta VC, Gitlin JD (1997) Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem 272:9221–6

    Article  PubMed  CAS  Google Scholar 

  15. Murata Y, Yamakawa E, Iizuka T, Kodama H, Abe T, Seki Y, Kodama M (1995) Failure of copper incorporation into ceruloplasmin in the Golgi apparatus of LEC rat hepatocytes. Biochem Biophys Res Commun 209:349–55

    Article  PubMed  CAS  Google Scholar 

  16. Terada K, Kawarada Y, Miura N, Yasui O, Koyama K, Sugiyama T (1995) Copper incorporation into ceruloplasmin in rat livers. Biochim Biophys Acta 1270:58–62

    PubMed  Google Scholar 

  17. Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, De Jong GJ, Gitlin JD (2002) Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 277:46632–8

    Article  PubMed  CAS  Google Scholar 

  18. Langner C, Denk H (2004) Wilson disease. Virchows Arch 445:111–8

    PubMed  CAS  Google Scholar 

  19. Lutsenko S, Efremov RG, Tsivkovskii R, Walker JM (2002) Human copper-transporting ATPase ATP7B (the Wilson’s disease protein): biochemical properties and regulation. J Bioenerg Biomembr 34:351–62

    Article  PubMed  CAS  Google Scholar 

  20. Tsivkovskii R, MacArthur BC, Lutsenko S (2001) The Lys1010-Lys1325 fragment of the Wilson’s disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem 276:2234–42

    Article  PubMed  CAS  Google Scholar 

  21. Bissig KD, Wunderli-Ye H, Duda PW, Solioz M (2001) Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochem J 357:217–23

    Article  PubMed  CAS  Google Scholar 

  22. Forbes JR, Cox DW (1998) Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant? Am J Hum Genet 63:1663–74

    Article  PubMed  CAS  Google Scholar 

  23. Mandal AK, Arguello JM (2003) Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. Biochemistry 42:11040–7

    Article  PubMed  CAS  Google Scholar 

  24. Mandal AK, Yang Y, Kertesz TM, Arguello JM (2004) Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem 279:54802–7

    Article  PubMed  CAS  Google Scholar 

  25. Voskoboinik I, Greenough M, La Fontaine S, Mercer JF, Camakaris J (2001) Functional studies on the Wilson copper P-type ATPase and toxic milk mouse mutant. Biochem Biophys Res Commun 281:966–70

    Article  PubMed  CAS  Google Scholar 

  26. Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2–terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–9

    Article  PubMed  CAS  Google Scholar 

  27. Larin D, Mekios C, Das K, Ross B, Yang AS, Gilliam TC (1999) Characterization of the interaction between the Wilson and Menkes disease proteins and the cytoplasmic copper chaperone, HAH1p. J Biol Chem 274:28497–504

    Article  PubMed  CAS  Google Scholar 

  28. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O’Halloran TV (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12:255–71

    Article  PubMed  CAS  Google Scholar 

  29. DiDonato M, Hsu HF, Narindrasorasak S, Que L Jr, Sarkar B (2000) Copper-induced conformational changes in the N-terminal domain of the Wilson disease copper-transporting ATPase. Biochemistry 39:1890–6

    Article  PubMed  CAS  Google Scholar 

  30. Ralle M, Lutsenko S, Blackburn NJ (2004) Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands. J Inorg Biochem 98:765–74

    Article  PubMed  CAS  Google Scholar 

  31. Walker JM, Huster D, Ralle M, Morgan CT, Blackburn NJ, Lutsenko S (2004) The N-terminal metal-binding site 2 of the Wilson’s Disease Protein plays a key role in the transfer of copper from Atox1. J Biol Chem 279:15376–84

    Article  PubMed  CAS  Google Scholar 

  32. Bunce J, Achila D, Hetrick E, Lesley L, Huffman DL (2006) Copper transfer studies between the N-terminal copper binding domains one and four of human Wilson protein. Biochim Biophys Acta 1760:907–12

    PubMed  CAS  Google Scholar 

  33. Huster D, Lutsenko S (2003) The distinct roles of the N-terminal copper-binding sites in regulation of catalytic activity of the Wilson’s disease protein. J Biol Chem 278:32212–8

    Article  PubMed  CAS  Google Scholar 

  34. Cater MA, Forbes J, La Fontaine S, Cox D, Mercer JF (2004) Intracellular trafficking of the human Wilson protein: the role of the six N-terminal metal-binding sites. Biochem J 380:805–13

    Article  PubMed  CAS  Google Scholar 

  35. Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol 289:G904–16

    Article  PubMed  CAS  Google Scholar 

  36. Achila D, Banci L, Bertini I, Bunce J, Ciofi-Baffoni S, Huffman DL (2006) Structure of human Wilson protein domains 5 and 6 and their interplay with domain 4 and the copper chaperone HAH1 in copper uptake. Proc Natl Acad Sci U S A 103:5729–34

    Article  PubMed  CAS  Google Scholar 

  37. Tsivkovskii R, Eisses JF, Kaplan JH, Lutsenko S (2002) Functional properties of the copper-transporting ATPase ATP7B (the Wilson’s disease protein) expressed in insect cells. J Biol Chem 277:97683

    Article  PubMed  CAS  Google Scholar 

  38. Tao TY, Liu F, Klomp L, Wijmenga C, Gitlin JD (2003) The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 278:41593–6

    Article  PubMed  CAS  Google Scholar 

  39. Lim CM, Cater MA, Mercer JF, La Fontaine S (2006) Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B but not ATP7A. J Biol Chem 281:14006–14

    Article  PubMed  CAS  Google Scholar 

  40. Lim CM, Cater MA, Mercer JF, La Fontaine S (2006) Copper-dependent interaction of glutaredoxin with the N termini of the copper-ATPases (ATP7A and ATP7B) defective in Menkes and Wilson diseases. Biochem Biophys Res Commun 348:428–36

    Article  PubMed  CAS  Google Scholar 

  41. Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–35

    Article  PubMed  CAS  Google Scholar 

  42. Sazinsky MH, Mandal AK, Arguello JM, Rosenzweig AC (2006) Structure of the ATP binding domain from the Archaeoglobus fulgidus Cu+-ATPase. J Biol Chem 281:11161–6

    Article  PubMed  CAS  Google Scholar 

  43. Dmitriev O, Tsivkovskii R, Abildgaard F, Morgan CT, Markley JL, Lutsenko S (2006) Solution structure of the N-domain of Wilson disease protein: distinct nucleotide-binding environment and effects of disease mutations. Proc Natl Acad Sci U S A 103:5302–7

    Article  PubMed  CAS  Google Scholar 

  44. Sazinsky MH, Agarwal S, Arguello JM, Rosenzweig AC (2006) Structure of the Actuator Domain from the Archaeoglobus fulgidus Cu(+)-ATPase(,). Biochemistry 45:9949–9955

    Article  PubMed  CAS  Google Scholar 

  45. Anthonisen AN, Clausen JD, Andersen JP (2006) Mutational analysis of the conserved TGES loop of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 281:31572–82

    Article  PubMed  CAS  Google Scholar 

  46. Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73:269–92

    Article  PubMed  CAS  Google Scholar 

  47. Moller JV, Olesen C, Jensen AM, Nissen P (2005) The structural basis for coupling of Ca2+ transport to ATP hydrolysis by the sarcoplasmic reticulum Ca2+-ATPase. J Bioenerg Biomembr 37:359–64

    Article  PubMed  CAS  Google Scholar 

  48. Paulsen M, Lund C, Akram Z, Winther JR, Horn N, Moller LB (2006) Evidence that translation reinitiation leads to a partially functional menkes protein containing two copper-binding sites. Am J Hum Genet 79:214–29

    Article  PubMed  CAS  Google Scholar 

  49. Majumdar R, Al Jumah M, Al Rajeh S, Fraser M, Al Zaben A, Awada A, Al Traif I, Paterson M (2000) A novel deletion mutation within the carboxyl terminus of the copper-transporting ATPase gene causes Wilson disease. J Neurol Sci 179:140–3

    Article  PubMed  CAS  Google Scholar 

  50. Hsi G, Cullen LM, Moira Glerum D, Cox DW (2004) Functional assessment of the carboxy-terminus of the Wilson disease copper-transporting ATPase, ATP7B. Genomics 83:473–81

    Article  PubMed  CAS  Google Scholar 

  51. Cater MA, La Fontaine S, Shield K, Deal Y, Mercer JF (2006) ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion. Gastroenterology 130:493–506

    Article  PubMed  CAS  Google Scholar 

  52. Schaefer M, Hopkins RG, Failla ML, Gitlin JD (1999) Hepatocyte-specific localization and copper-dependent trafficking of the Wilson’s disease protein in the liver. Am J Physiol 276:G639–46

    PubMed  CAS  Google Scholar 

  53. Vanderwerf SM, Cooper MJ, Stetsenko IV, Lutsenko S (2001) Copper specifically regulates intracellular phosphorylation of the Wilson’s disease protein, a human copper-transporting ATPase. J Biol Chem 276:36289–94

    Article  PubMed  CAS  Google Scholar 

  54. Hung IH, Suzuki M, Yamaguchi Y, Yuan DS, Klausner RD, Gitlin JD (1997) Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem 272:21461–6

    Article  PubMed  CAS  Google Scholar 

  55. Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ (2000) Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119:782–93

    Article  PubMed  CAS  Google Scholar 

  56. Fanni D, Pilloni L, Orru S, Coni P, Liguori C, Serra S, Lai ML, Uccheddu A, Contu L, Van Eyken P et al (2005) Expression of ATP7B in normal human liver. Eur J Histochem 49:371–8

    PubMed  CAS  Google Scholar 

  57. Payne AS, Kelly EJ, Gitlin JD (1998) Functional expression of the Wilson disease protein reveals mislocalization and impaired copper dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A 95:10854–9

    Article  PubMed  CAS  Google Scholar 

  58. Huster D, Hoppert M, Lutsenko S, Zinke J, Lehmann C, Mossner J, Berr F, Caca K (2003) Defective cellular localization of mutant ATP7B in Wilson’s disease patients and hepatoma cell lines. Gastroenterology 124:335–45

    Article  PubMed  CAS  Google Scholar 

  59. Tsivkovskii R, Efremov RG, Lutsenko S (2003) The role of the invariant His-1069 in folding and function of the Wilson’s disease protein, the human copper-transporting ATPase ATP7B. J Biol Chem 278:13302–8

    Article  PubMed  CAS  Google Scholar 

  60. Morgan CT, Tsivkovskii R, Kosinsky YA, Efremov RG, Lutsenko S (2004) The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F. J Biol Chem 279:36363–71

    Article  PubMed  CAS  Google Scholar 

  61. Voskoboinik I, Mar J, Camakaris J (2003) Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochem Biophys Res Commun 301:488–94

    Article  PubMed  CAS  Google Scholar 

  62. Gromadzka G, Schmidt HH, Genschel J, Bochow B, Rodo M, Tarnacka B, Litwin T, Chabik G, Czlonkowska A (2006) p.H1069Q mutation in ATP7B and biochemical parameters of copper metabolism and clinical manifestation of Wilson’s disease. Mov Disord 21:245–8

    Article  PubMed  Google Scholar 

  63. Gitlin JD (2003) Wilson disease. Gastroenterology 125:1868–77

    Article  PubMed  Google Scholar 

  64. Huster, D., Kuhn, H.J., Mossner, J. and Caca, K (2005) [Wilson disease]. Internist (Berl), 46:731–2, 734–6, 738–40

    Google Scholar 

  65. Hussain SP, Raja K, Amstad PA, Sawyer M, Trudel LJ, Wogan GN, Hofseth LJ, Shields PG, Billiar TR, Trautwein C et al (2000) Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases. Proc Natl Acad Sci U S A 97:12770–5

    Article  PubMed  CAS  Google Scholar 

  66. Attri S, Sharma N, Jahagirdar S, Thapa BR, Prasad R (2006) Erythrocyte metabolism and antioxidant status of patients with Wilson disease with hemolytic anemia. Pediatr Res 59:593–7

    Article  PubMed  CAS  Google Scholar 

  67. Gerbasi V, Lutsenko S, Lewis EJ (2003) A mutation in the ATP7B copper transporter causes reduced dopamine beta-hydroxylase and norepinephrine in mouse adrenal. Neurochem Res 28:867–73

    Article  PubMed  CAS  Google Scholar 

  68. Huster D, Finegold MJ, Morgan CT, Burkhead JL, Nixon R, Vanderwerf SM, Gilliam CT, Lutsenko S (2006) Consequences of copper accumulation in the livers of the Atp7b-/- (Wilson disease gene) knockout mice. Am J Pathol 168:423–34

    Article  PubMed  CAS  Google Scholar 

  69. Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, Ross BM, Mekios C, Scheinberg IH, Gilliam TC (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8:1665–71

    Article  PubMed  CAS  Google Scholar 

  70. Fuentealba IC, Aburto EM (2003) Animal models of copperassociated liver disease. Comp Hepatol 2:5

    Article  PubMed  Google Scholar 

  71. Huster D, Purnat TD, Ralle M, Fiehn O, Stuckert F, Burkhead JL, Olson NE, Teupser D and S, L (2006) High copper selectively alters lipid matabolism and cell cycle (submitted).

Download references

Acknowledgements

This work was supported by the National Institute of Health grants F31-NS047963 to M.Y.B. (M.Min) and PO1 GM 067166 and R01DK071865 to S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Lutsenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartee, M.Y., Lutsenko, S. Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level. Biometals 20, 627–637 (2007). https://doi.org/10.1007/s10534-006-9074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9074-3

Keywords

Navigation