Skip to main content

Advertisement

Log in

Mechanisms and magnitude of dissolved silica release from a New England salt marsh

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Salt marshes are sites of silica (SiO2) cycling and export to adjacent coastal systems, where silica availability can exert an important control over coastal marine primary productivity. Mineral weathering and biologic fixation concentrate silica in these systems; however, the relative contributions of geologic versus biogenic silica dissolution to this export are not known. We collected water samples from the tidal creek of a relatively undisturbed New England (USA) salt marsh over 13 tidal cycles in spring, summer, and fall 2014–2016 to determine patterns of dissolved silica (DSi) concentration in the water entering and leaving the marsh. DSi concentrations in the tidal creek peaked in the summer and were at a minimum in the fall. Additionally, we analyzed DSi concentrations and Ge/Si ratios in marsh porewater and groundwater samples as a tracer of DSi origin. Ge/Si ratios in the porewater, subterranean estuary, and fresh groundwater averaged 6.3 ± 0.31 µmol/mol, which is consistent with production via silicate weathering rather than biogenic silica dissolution. These results highlight a previously unstudied role marsh sediment plays in coastal biogeochemistry by supplying DSi to coastal ecosystems. This marsh exported 1170 mmol DSi m−2 year−1, 85% of which originated from porewater exchange, with minor contributions from brackish groundwater discharge from the subterranean estuary. Examining these values in the context of the other known DSi inputs indicates that coastal marshes provide ~ 75% of the annual silica inputs into the adjacent estuary, Waquoit Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during this project are currently available as U.S. Geological Survey (USGS) data releases (https://www.sciencebase.gov/catalog/item/5fd0c4c0d34e30b91239b615; https://www.usgs.gov/data/time-series-biogeochemical-and-flow-data-tidal-salt-marsh-creek-sage-lot-pond-waquoit-bay) and on Dryad Digital Repository (https://doi.org/10.5061/dryad.zs7h44jdd).

References

  • Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(3):677–682

    Article  Google Scholar 

  • Antler G, Mills JV, Hutchings AM, Redeker KR, Turchyn AV (2019) The sedimentary carbon-sulfer-iron interplay—a lesson from East Anglian salt marsh sediments. Front Earth Sci 7:140

    Article  Google Scholar 

  • Azam F, Volcani B (1981) Germanium-silicon interactions in biological systems. In: Silicon and siliceous structures in biological systems. Springer. p 43–67

  • Balke T, Stock M, Jensen K, Bouma TJ, Kleyer M (2016) A global analysis of the seaward salt marsh extent: the importance of tidal range. Water Resour Res 52(5):3775–3786

    Article  Google Scholar 

  • Baronas JJ, Torres MA, West AJ, Rouxel O, Georg B, Bouchez J, Gaillardet J, Hammond DE (2018) Ge and Si isotope signatures in rivers: a quantitative multi-proxy approach. Earth Planet Sci Lett 503:194–215

    Article  Google Scholar 

  • Boumans RM, Day JW (1993) High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16(2):375–380

    Article  Google Scholar 

  • Brooks T, Kroeger M, Mann K, Wang A, Ganju Z, Suttles NOK, Brosnahan J, Chu S, Song S, Pohlman S (2021) Geochemical data supporting investigation of solute and particle cycling and fluxes from two tidal wetlands on the south shore of Cape Cod, Massachusetts, 2012–2019

  • Carey J (2020) Soil age alters the global silicon cycle. Science 369(6508):1161–1162

    Article  Google Scholar 

  • Carey J, Fulweiler R (2014a) Salt marsh tidal exchange increases residence time of silica in estuaries. Limnol Oceanogr 59(4):1203–1212

    Article  Google Scholar 

  • Carey JC, Fulweiler R (2012) Human activities directly alter watershed dissolved silica fluxes. Biogeochemistry 111(1–3):125–138

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2013) Nitrogen enrichment increases net silica accumulation in a temperate salt marsh. Limnol Oceanogr 58(1):99–111

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2014b) Silica uptake by Spartina—evidence of multiple modes of accumulation from salt marshes around the world. Front Plant Sci 5:186

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles. https://doi.org/10.1029/2002GB001917

    Article  Google Scholar 

  • Chu SN, Wang ZA, Gonneea ME, Kroeger KD, Ganju NK (2018) Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements. Mar Chem 206:7–18

    Article  Google Scholar 

  • Clymans W, Conley DJ, Battles JJ, Frings PJ, Koppers MM, Likens GE, Johnson CE (2016) Silica uptake and release in live and decaying biomass in a northern hardwood forest. Ecology 97(11):3044–3057

    Article  Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16(4): 68-61–68-68

  • Conley DJ, Malone TC (1992) Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Mar Ecol Prog Ser Oldendorf 81(2):121–128

    Article  Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16(2):61–68

    Article  Google Scholar 

  • Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol 30(8):1340–1357

    Article  Google Scholar 

  • Cornelis J-T, Delvaux B, Cardinal D, André L, Ranger J, Opfergelt S (2010) Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios. Geochim Cosmochim Acta 74(14):3913–3924

    Article  Google Scholar 

  • Cornelis J-T, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342(1):369–378

    Article  Google Scholar 

  • De Tombeur F, Turner B, Laliberté E, Lambers H, Mahy G, Faucon M-P, Zemunik G, Cornelis J-T (2020) Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science 369(6508):1245–1248

    Article  Google Scholar 

  • Delvigne C, Opfergelt S, Cardinal D, Delvaux B, André L (2009) Distinct silicon and germanium pathways in the soil-plant system: Evidence from banana and horsetail. J Geophys Res 114(2):124–131. https://doi.org/10.1029/2008jg000899

    Article  Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433(7027):728–731

    Article  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91(1):11–17

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240

    Article  Google Scholar 

  • Fraysse F, Cantais F, Pokrovsky OS, Schott J, Meunier J-D (2006) Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon. J Geochem Explor 88(1–3):202–205

    Article  Google Scholar 

  • Froelich P, Blanc V, Mortlock R, Chillrud S, Dunstan W, Udomkit A, Peng TH (1992) River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans. Paleoceanography 7(6):739–767

    Article  Google Scholar 

  • Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycleof dissolved silica in a southern New Englandcoastal river. Biogeochemistry 74(1):115–130

    Article  Google Scholar 

  • Gérard F, Mayer K, Hodson M, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72(3):741–758

    Article  Google Scholar 

  • Giblin AE, Tobias CR, Song B, Weston N, Banta GT, H. RIVERA-MONROY V (2013) The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26(3):124–131

    Article  Google Scholar 

  • Giblin AE, Howarth RW (1984) Porewater evidence for a dynamic sedimentary iron cycle in salt marshes 1. Limnol Oceanogr 29(1):47–63

    Article  Google Scholar 

  • Goñi MA, Gardner IR (2003) Seasonal dynamics in dissolved organic carbon concentrations in a coastal water-table aquifer at the forest-marsh interface. Aquat Geochem 9(3):209–232

    Article  Google Scholar 

  • Gonneea ME, Charette MA (2014) Hydrologic controls on nutrient cycling in an unconfined coastal aquifer. Environ Sci Technol 48(24):14178–14185

    Article  Google Scholar 

  • Gonneea ME, Maio CV, Kroeger KD, Hawkes AD, Mora J, Sullivan R, Madsen S, Buzard RM, Cahill N, Donnelly JP (2019) Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea-level rise. Estuar Coast Shelf Sci 217:56–68

    Article  Google Scholar 

  • Granum E, Raven JA, Leegood RC (2005) How do marine diatoms fix 10 billion tonnes of inorganic carbon per year? Can J Bot 83(7):898–908

    Article  Google Scholar 

  • Granville KE, Ooi SK, Koenig LE, Lawrence BA, Elphick CS, Helton AM (2021) Seasonal patterns of denitrification and N2O production in a southern New England salt marsh. Wetlands 41(1):1–13

    Article  Google Scholar 

  • Hodson M, White P, Mead A, Broadley M (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96(6):1027–1046

    Article  Google Scholar 

  • Hodson MJ, Evans DE (2020) Aluminium–silicon interactions in higher plants: an update. J Exp Bot 71(21):6719–6729

    Article  Google Scholar 

  • Howes BL, Goehringer DD (1994) Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar Ecol Prog Ser Oldendorf 114(3):289–301

    Article  Google Scholar 

  • Irigoien X, Harris RP, Verheye HM, Joly P, Runge J, Starr M, Pond D, Campbell R, Shreeve R, Ward P (2002) Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419(6905):387–389

    Article  Google Scholar 

  • Kaplan W, Valiela I, Teal JM (1979) Denitrification in a salt marsh ecosystem 1. Limnol Oceanogr 24(4):726–734

    Article  Google Scholar 

  • Kearney MS, Turner RE (2016) Microtidal marshes: can these widespread and fragile marshes survive increasing climate–sea level variability and human action? J Coast Res 32(3):686–699

    Article  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • Kurtz AC, Derry LA, Chadwick OA (2002) Germanium-silicon fractionation in the weathering environment. Geochim Cosmochim Acta 66(9):1525–1537

    Article  Google Scholar 

  • Kurtz AC, Lugolobi F, Salvucci G (2011) Germanium-silicon as a flow path tracer: application to the Rio Icacos watershed. Water Resour Res. https://doi.org/10.1029/2010WR009853

    Article  Google Scholar 

  • Lancelot C (1995) The mucilage phenomenon in the continental coastal waters of the North Sea. Sci Total Environ 165(1–3):83–102

    Article  Google Scholar 

  • Leblanc K, Leynaert A, Rimmelin P, Moutin T, Raimbault P, Ras J, Quéguiner B (2005) A seasonal study of diatom dynamics in the North Atlantic during the POMME experiment (2001): evidence for Si limitation of the spring bloom. J Geophys Res. https://doi.org/10.1029/2004JC002621

    Article  Google Scholar 

  • Lugolobi F, Kurtz AC, Derry LA (2010) Germanium–silicon fractionation in a tropical, granitic weathering environment. Geochim Cosmochim Acta 74(4):1294–1308

    Article  Google Scholar 

  • Luther GW, Church TM, Scudlark JR, Cosman M (1986) Inorganic and organic sulfur cycling in salt-marsh pore waters. Science 232(4751):746–749

    Article  Google Scholar 

  • Luther GW III, Giblin A, Howarth RW, Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim Cosmochim Acta 46(12):2665–2669

    Article  Google Scholar 

  • Mann AG, Gonneea JA, Brosnahan ME, Brooks SM, Wang TW, Ganju ZA, Kroeger NK, Kevin D (2019) Time-series of biogeochemical and flow data from a tidal salt-marsh creek. Sage Lot Pond, Waquoit Bay, Massachusetts (2012–2016)

  • Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60

    Article  Google Scholar 

  • MATLAB (2021b) The MathWorks Inc., Natick, Massachusetts

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56(414):1255–1261

    Article  Google Scholar 

  • Mortlock RA, Frohlich PN (1987) Continental weathering of germanium: GeSi in the global river discharge. Geochim Cosmochim Acta 51(8):2075–2082

    Article  Google Scholar 

  • Moseman-Valtierra S, Abdul-Aziz OI, Tang J, Ishtiaq KS, Morkeski K, Mora J, Quinn RK, Martin RM, Egan K, Brannon EQ (2016) Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh. Ecosphere 7(11):e01560

    Article  Google Scholar 

  • Müller F, Struyf E, Hartmann J, Weiss A, Jensen K (2013) Impact of grazing management on silica export dynamics of Wadden Sea saltmarshes. Estuar Coast Shelf Sci 127:1–11

    Article  Google Scholar 

  • Murnane RJ, Stallard RF (1990) Germanium and silicon in rivers of the Orinoco drainage basin. Nature 344(6268):749–752

    Article  Google Scholar 

  • Nawaz MA, Zakharenko AM, Zemchenko IV, Haider MS, Ali MA, Imtiaz M, Chung G, Tsatsakis A, Sun S, Golokhvast KS (2019) Phytolith formation in plants: from soil to cell. Plants 8(8):249

    Article  Google Scholar 

  • NOAA National Estuarine Research Reserve System (NERRS) (2019) System-wide Monitoring Program. Data accessed from the NOAA NERRS Centralized Data Management Office website: http://www.nerrsdata.org. Accessed July 2019

  • Norris A, Hackney C (1999) Silica content of a mesohaline tidal marsh in North Carolina. Estuar Coast Shelf Sci 49(4):597–605

    Article  Google Scholar 

  • Officer C, Ryther J (1980) The possible importance of silicon in marine eutrophication. Mar Ecol Prog Ser 3(1):83–91

    Article  Google Scholar 

  • Perry DC, Chaffee C, Wigand C, Thornber C (2020) Implementing adaptive management into a climate change adaptation strategy for a drowning New England salt marsh. J Environ Manag 270:110928

    Article  Google Scholar 

  • Rahman S, Tamborski JJ, Charette MA, Cochran JK (2019) Dissolved silica in the subterranean estuary and the impact of submarine groundwater discharge on the global marine silica budget. Mar Chem 208:29–42

    Article  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed Jan 2019

  • Reed DJ, De Luca N, Foote AL (1997) Effect of hydrologic management on marsh surface sediment deposition in coastal Louisiana. Estuaries 20(2):301–311

    Article  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynth Res 93(1):79–88

    Article  Google Scholar 

  • Rousseaux CS, Gregg WW (2014) Interannual variation in phytoplankton primary production at a global scale. Remote Sens 6(1):1–19

    Article  Google Scholar 

  • Ryves DB, Battarbee RW, Juggins S, Fritz SC, Anderson NJ (2006) Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnol Oceanogr 51(3):1355–1368

    Article  Google Scholar 

  • Santos IR, Chen X, Lecher AL, Sawyer AH, Moosdorf N, Rodellas V, Tamborski J, Cho HM, Dimova N, Sugimoto R, Bonaglia S (2021) Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat Rev Earth Environ 2(5):307–323

    Article  Google Scholar 

  • Schaller J, Hodson MJ, Struyf E (2017) Is relative Si/Ca availability crucial to the performance of grassland ecosystems? Ecosphere 8(3):e01726

    Article  Google Scholar 

  • Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. RWS-North Sea Directorate

  • Smayda TJ (1998) Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. ICES J Mar Sci 55(4):562–573

    Article  Google Scholar 

  • Smith KEL, Terrano JF, Khan NS, Smith CG, Pitchford JL (2021) Lateral shoreline erosion and shore-proximal sediment deposition on a coastal marsh from seasonal, storm, and decadal measurements. Geomorphology 389:107829

    Article  Google Scholar 

  • Song S, Wang ZA, Gonneea ME, Kroeger KD, Chu SN, Li D, Liang H (2020) An important biogeochemical link between organic and inorganic carbon cycling: effects of organic alkalinity on carbonate chemistry in coastal waters influenced by intertidal salt marshes. Geochim Cosmochim Acta 275:123–139

    Article  Google Scholar 

  • Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Process 33(9):1436–1457

    Article  Google Scholar 

  • Strickland J, Parsons T (1968) A practical handbook of seawater analysis. Bull Fish Res Bd Can 167:311

    Google Scholar 

  • Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7(2):88–94

    Article  Google Scholar 

  • Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107(1):9–18

    Article  Google Scholar 

  • Struyf E, Damme SV, Gribsholt B, Meire P (2005a) Freshwater marshes as dissolved silica recyclers in an estuarine environment. Hydrobiologia 540(1):69–77

    Article  Google Scholar 

  • Struyf E, Dausse A, Van Damme S, Bal K, Gribsholt B, Boschker HT, Middelburg JJ, Meire P (2006) Tidal marshes and biogenic silica recycling at the land-sea interface. Limnol Oceanogr 51(2):838–846

    Article  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) The global biogeochemical silicon cycle. Silicon 1(4):207–213

    Article  Google Scholar 

  • Struyf E, Temmerman S, Meire P (2007) Dynamics of biogenic Si in freshwater tidal marshes: Si regeneration and retention in marsh sediments (Scheldt estuary). Biogeochemistry 82(1):41–53

    Article  Google Scholar 

  • Struyf E, Van Damme S, Gribsholt B, Middelburg JJ, Meire P (2005b) Biogenic silica in tidal freshwater marsh sediments and vegetation (Schelde estuary, Belgium). Mar Ecol Prog Ser 303:51–60

    Article  Google Scholar 

  • Tamborski JJ, Eagle M, Kurylyk BL, Kroeger KD, Wang ZA, Henderson P, Charette MA (2021) Pore water exchange-driven inorganic carbon export from intertidal salt marshes. Limnol Oceanogr 66(5):1774–1792

    Article  Google Scholar 

  • Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Ann Rev Mar Sci 5:477–501

    Article  Google Scholar 

  • Valiela I, Geist M, McClelland J, Tomasky G (2000) Nitrogen loading from watersheds to estuaries: verification of the Waquoit Bay nitrogen loading model. Biogeochemistry 49(3):277–293

    Article  Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42(5part2):1105–1118

    Article  Google Scholar 

  • Valiela I, Teal JM (1979) The nitrogen budget of a salt marsh ecosystem. Nature 280(5724):652–656

    Article  Google Scholar 

  • Vieillard AM, Fulweiler RW, Hughes ZJ, Carey JC (2011) The ebb and flood of silica: quantifying dissolved and biogenic silica fluxes from a temperate salt marsh. Estuar Coast Shelf Sci 95(4):415–423

    Article  Google Scholar 

  • Wang ZA, Kroeger KD, Ganju NK, Gonneea ME, Chu SN (2016) Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol Oceanogr 61(5):1916–1931

    Article  Google Scholar 

  • Watson E, Raposa K, Carey J, Wigand C, Warren R (2017) Anthropocene survival of southern New England’s salt marshes. Estuaries Coasts 40(3):617–625

    Article  Google Scholar 

  • West AJ, Galy A, Bickle M (2005) Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett 235(1–2):211–228

    Article  Google Scholar 

  • Weston NB (2014) Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuaries Coasts 37(1):1–23

    Article  Google Scholar 

  • White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63(19–20):3277–3291

    Article  Google Scholar 

  • White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506

    Article  Google Scholar 

  • Wigand C, Ardito T, Chaffee C, Ferguson W, Paton S, Raposa K, Vandemoer C, Watson E (2017) A climate change adaptation strategy for management of coastal marsh systems. Estuaries Coasts 40(3):682–693

    Article  Google Scholar 

  • Yacano MR, Foster SQ, Ray NE, Oczkowski A, Raven JA, Fulweiler RW (2021) Marine macroalgae are an overlooked sink of silicon in coastal systems. The New phytologist:

  • Yamada SS, D’Elia CF (1984) Silicic acid regeneration from estuarine sediment cores. Mar Ecol Prog Ser Oldendorf 18(1):113–118

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank U.S. Geological Survey staff including T. Wallace Brooks, Jennifer O’Keefe Suttles, and Adrian Mann for field and analytical efforts, and Jordan Mora and other staff at the Waquoit Bay National Estuarine Research Reserve for sampling support. Thanks to Thomas Ireland and James Baldwin for their mentorship and assistance with sample analysis and statistical analysis, respectively. We thank Kathryn Smith and two anonymous reviewers for their critical reviews of this manuscript and Christo Buizert for his feedback on an earlier draft.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection was performed by Meagan Eagle. Data analysis was performed by Olivia Williams, Joanna Carey, Meagan Eagle, and Joseph Tamborski. The first draft of the manuscript was written by Olivia Williams and all authors commented on and contributed to subsequent versions of the manuscript.

Corresponding author

Correspondence to Olivia L. Williams.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. This study was supported by the U.S. Geological Survey (USGS) Coastal and Marine Geology Program with support from the USGS Land Change Science Program’s LandCarbon program, U.S. National Science Foundation (OCE-1459521), NOAA Science Collaborative (NA09NOS4190153). Additional support was provided by ARCS Oregon, the Boston University (BU) Undergraduate Research Opportunities Program, and the BU Department of Earth and Environment. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Additional information

Responsible Editor: Justin B. Richardson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, O.L., Kurtz, A.C., Eagle, M.J. et al. Mechanisms and magnitude of dissolved silica release from a New England salt marsh. Biogeochemistry 161, 251–271 (2022). https://doi.org/10.1007/s10533-022-00976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-022-00976-y

Keywords

Navigation