Skip to main content

Advertisement

Log in

Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

India has committed to increase carbon sequestration by forests under the Nationally Determined Contributions (NDC). However, the CO2 carbon exchange characteristics (Gross Primary Productivity, Net Ecosystem Exchange, and Ecosystem respiration) of Indian forests are poorly understood. Immense carbon sequestration opportunities exist with the natural as well as planted forests. Therefore, it becomes vital to assess the potential of existing forests (natural and planted) by means of the most accurate and reliable methods of eddy covariance (EC). It is also important to know the eco-physiological response of the forests towards diurnal, seasonal, and yearly changes in the prevailing environmental conditions. We analyzed CO2 carbon exchange characteristics of a mature moist deciduous forest and a young mixed deciduous plantation located in the sub-tropical climate regime in the western Himalayan foothills of India with the help of co-located EC measurements (2016 to 2018). The study reveals that both the mature forest (− 719.43 gCm− 2year− 1) and young plantation (− 467.49 gC m− 2 year− 1) are absorbing a significant amount of atmospheric CO2 carbon. The maximum uptake of atmospheric CO2 occurred during the post-monsoon season in both the forests. The minimum NEE of the mixed deciduous plantation was observed during the leaf fall period while the NEE of the moist deciduous forest was the lowest in monsoon due to a higher respiration rate during monsoon. Among the environmental factors, soil moisture showed maximum control on the productivity of both the forest ecosystems. The value reported in this study can help Forest Survey of India in establishing/assessing emission factor for these particular forest types. This study can also help forest managers in carbon assessment of plantation under NDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderegg WRL, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, Birdsey R, Dunne JP, Houghton RA, Myneni RB, Pan Y, Sarmiento JL, Serota N, Shevliakova E, Tans P, Pacala SW (2015) Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc Natl Acad Sci USA 112:1–6

    Google Scholar 

  • Artigas F, Shin JY, Hobble C, Marti-Donati A, Schäfer KV, Pechmann I (2015) Long term carbon storage potential and CO2 sink strength of a restored salt marsh in New Jersey. Agric For Meteorol 200:313–321. https://doi.org/10.1016/j.agrformet.2014.09.012

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Bernhofer C, Clement R, Elbers J, Granier A, Snijders W, Valentini R, Vesala T (2000) Estimates of the Annual Net Carbon and Water Exchange. Adv Ecol Res 30:113–174

    Google Scholar 

  • Baldocchi D, Chu H, Reichstein M (2018) Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agric For Meteorol 249:520–533. https://doi.org/10.1016/j.agrformet.2017.05.015

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KTU, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsyn S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities dennis. Bull Am Meteorol Soc 82:2415–2434

    Google Scholar 

  • Baldocchi D, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob Chang Biol 2:159–168

    Google Scholar 

  • Banwart S, Menon M, Bernasconi SM, Bloemc J, Blumd WEH, de Souza DM, Davidsdotir B, Duffy C, Lair GJ, Kram P, Lamacova A, Lundin L, Nikolaidis NP, Novak M, Panagos P, Ragnarsdottir KV, Reynolds B, Robinson D, Rousseva S, de Ruiter P, van Gaans P, Weng L, White T, Zhang B (2011) Soil processes and functions in critical zone observatories: hypotheses and experimental design. C R Geosci 344:758–772

    Google Scholar 

  • Barr AG, Morgenstern K, Black TA, McCaughey JH, Nesic Z (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric For Meteor 140(1–4):322–337. https://doi.org/10.1016/j.agrformet.2006.08. 007

    Article  Google Scholar 

  • Behrendt T, Catão ECP, Bunk R, Yi Z, Schweer E, Kolb S, Kesselmeier J, Trumbore S (2019) Microbial community responses determine how soil-atmosphere exchange of carbonyl sulfide, carbon monoxide, and nitric oxide responds to soil moisture. Soil 5:121–135

    Google Scholar 

  • Beringer J, Hutley LB, McHugh I, Arndt SK, Campbell D, Cleugh HA, Cleverly J, De Dios VR, Eamus D, Evans B, Ewenz C, Grace P, Griebel A, Haverd V, Hinko-Najera N, Huete A, Isaac P, Kanniah K, Leuning R, Liddell MJ, MacFarlane C, Meyer W, Moore C, Pendall E, Phillips A, Phillips RL, Prober SM, Restrepo-Coupe N, Rutledge S, Schroder I, Silberstein R, Southall P, Sun Yee M, Tapper NJ, Van Gorsel E, Vote C, Walker J, Wardlaw T (2016) An introduction to the Australian and New Zealand flux tower network - OzFlux. Biogeosciences 13:5895–5916

    Google Scholar 

  • Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241

    Google Scholar 

  • Bhat GS, Morrison R, Taylor CM, Bhattacharya BK, Paleri S, Desai D, Evans JG, Pattnaik S, Sekhar M, Nigam R, Sattar A (2019) Spatial and temporal variability in energy and water vapour fluxes observed at seven sites on the Indian subcontinent during 2017. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3688

    Article  Google Scholar 

  • Biswas S, Bala S, Mazumdar A (2014) Diurnal and seasonal carbon sequestration potential of seven broadleaved species in a mixed deciduous forest in India. Atmos Environ 89:827–834. https://doi.org/10.1016/j.atmosenv.2014.03.015

    Article  Google Scholar 

  • Bonneville MC, Strachan IB, Humphreys ER, Roulet NT (2008) Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agric For Meteorol 148(1):69–81. https://doi.org/10.1016/j.agrformet.2007.09.004

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong unfluence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Google Scholar 

  • Burba G (2013) Eddy covariance method

  • Burton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR (2004) Simulated chronic NO -3 deposition reduces soil respiration in northern hardwood forests. Glob Chang Biol 10:1080–1091

    Google Scholar 

  • Carey EV, Sala A, Keane R, Allaway RMC (2001) Are old forests underestimated as global carbon sinks? Glob Chang Biol 7:339–44

  • Champion HG, Seth SK (1968) A revised forest types of India. Manag Publ Govt India, Delhi

    Google Scholar 

  • Chatterjee A, Roy A, Chakraborty S, Karipot AK, Sarkar C, Singh S, Ghosh SK, Mitra A, Raha S (2018) Biosphere atmosphere exchange of CO 2, H 2 O vapour and energy during spring over a high altitude himalayan forest in eastern India. Aerosol Air Qual Res 18:2704–2719

    Google Scholar 

  • Chen CI, Wang YN, Lih HW, Yu JC (2016) Three-year study on diurnal and seasonal CO 2 sequestration of a young Fraxinus griffithii plantation in Southern Taiwan. Forests 7:1–11

    Google Scholar 

  • Chen Z, Yu G, Wang Q (2019) Magnitude, pattern and controls of carbon flux and carbon use efficiency in China’s typical forests. Glob Planet Chang 172:464–473. https://doi.org/10.1016/j.gloplacha.2018.11.004

    Article  Google Scholar 

  • Chen Z, Yu G, Wang Q (2020) Effects of climate and forest age on the ecosystem carbon exchange of afforestation. J For Res 31(2):365–374. https://doi.org/10.1007/s11676-019-00946-5

    Article  Google Scholar 

  • Chen Z, Yu G, Zhu X, Wang Q, Niu S, Hu Z (2015) Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agric For Meteorol 203:180–190. https://doi.org/10.1016/j.agrformet.2015.01.012

    Article  Google Scholar 

  • Chmura DJ, Anderson PD, Howe GT, Harrington CA, Halofsky JE, Peterson DL, Shaw DC, Brad St.Clair J (2011) Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. For Ecol Manage 261:1121–1142. https://doi.org/10.1016/j.foreco.2010.12.040

    Article  Google Scholar 

  • Creevy AL, Payne RJ, Andersen R, Rowson JG (2020) Annual gaseous carbon budgets of forest-to-bog restoration sites are strongly determined by vegetation composition. Sci Tot Environ 705:135863. https://doi.org/10.1016/j.scitotenv.2019.135863

    Article  Google Scholar 

  • Davies WJ, Zhang J (1991) Drying Soil Regulation of Growth and. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Google Scholar 

  • Deans RM, Farquhar GD, Busch FA (2019) Estimating stomatal and biochemical limitations during photosynthetic induction. Plant Cell Environ:1–14. https://onlinelibrary.wiley.com/doi/abs/10.1111/pce.13622

  • Deb Burman PK, Sarma D, Williams M, Karipot A, Chakraborty S (2017) Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables. J Earth Sys Sci 126(7):99. https://doi.org/10.1007/s12040-017-0874-3

    Article  Google Scholar 

  • Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi AC (2012) Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO 2 ] and N fertilization. Agric For Meteorol 165:43–52. https://doi.org/10.1016/j.agrformet.2012.05.017

    Article  Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Gu J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Tha K, Paw U, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:53–74

    Google Scholar 

  • FAO (2008) UN Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD). Framework Document, 20

  • Fei X, Song Q, Zhang Y, Liu Y, Sha L, Yu G, Zhang L, Duan C, Deng Y, Wu C, Lu Z, Luo K, Chen A, Xu K, Liu W, Huang H, Jin Y, Zhou R, Li J, Lin Y, Zhou L, Fu Y, Bai X, Tang X, Gao J, Zhou W, Grace J (2018) Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China. Sci Total Environ 616–617:824–840. https://doi.org/10.1016/j.scitotenv.2017.10.239

    Article  Google Scholar 

  • Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–526

    Google Scholar 

  • Fu YS, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, AbdElgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014) Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc Nat Acad Sci 111(20):7355–7360. https://doi.org/10.1073/pnas.1321727111

    Article  Google Scholar 

  • Fu Z, Stoy PC, Luo Y, Chen J, Sun J, Montagnani L, Wohlfahrt G, Rahman AF, Rambal S, Bernhofer C, Wang J (2017) Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems. Agric For Meteorol 243:9–18. https://doi.org/10.1016/j.agrformet.2017.05.009

    Article  Google Scholar 

  • Gao Y, Li X, Liu L, Jia R, Yang H, Li G, Wei Y (2012) Seasonal variation of carbon exchange from a revegetation area in a Chinese desert. Agric For Meteorol 156:134–142. https://doi.org/10.1016/j.agrformet.2012.01.007

    Article  Google Scholar 

  • Gowing DJG, Davies WJ, Jones HG (1990) A Positive Root-sourced Signal as an Indicator of Soil Drying in Apple, Malus x domestica Borkh. J Exp Bot 41:1535–1540

    Google Scholar 

  • Gu L, Fuentes JD, Shugart HH, Staebler RM, Black TA (1999) Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: forests. J Geophys Res 104:31421–31434

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ van der, Dai X, Maskell K, Johnson CA (2001) Climate Change 2001: The Scientific Basis

  • Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, de Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res Biogeosciences 112

  • IPCC (2000) IPCC (Intergovernmental Panel on Climate Change) special report: land use, land-use change, and forestry

  • IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland

  • Irvine J, Law BE, Kurpius MR, Anthoni PM, Moore D, Schwarz PA (2004) Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine. Tree Physiol 24:753–763

    Google Scholar 

  • Jha CS, Thumaty KC, Rodda SR, Sonakia A, Dadhwal VK (2013) Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique. J Earth Syst Sci 122:1259–1268

    Google Scholar 

  • Johnson JW (2000) A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivar Behav Res 35(1):1–19. https://doi.org/10.1207/S15327906MBR3501_1

    Article  Google Scholar 

  • Kirschbaum MUF, Eamus D, Gifford RM, Roxburgh SH, Sands PJ. 2001, April. Definitions of some ecological terms commonly used in carbon accounting. In Net Ecosystem Exchange Workshop (pp. 18–20)

  • Kochendorfer J, Castillo EG, Haas E, Oechel WC (2011) Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest. Agric For Meteor 151(5):544–553

    Google Scholar 

  • Kushwaha SPS, Nandy S (2012) Species diversity and community structure in sal (Shorea robusta) forests of two different rainfall regimes in West Bengal, India. Biodiv Conserv 21(5):1215–1228. https://doi.org/10.1007/s10531-012-0264-8

    Article  Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Glob Chang Biol 16:439–453

    Google Scholar 

  • Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UHKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002) Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120

    Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Ivar Korsbakken J, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B,, Van Der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Van Der Laan-Luijkx IT. Earth Syst Sci Data 8:605–649 Global Carbon Budget 2016.

    Google Scholar 

  • Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol 195:172–181

    Google Scholar 

  • Lin H (2011) Three principles of soil change and pedogenesis in time and space. Soil Sci Soc Am J 75:2049–2070

    Google Scholar 

  • Lindroth A, Holst J, Heliasz M, Vestin P, Lagergren F, Biermann T, Cai Z, Mölder M (2018) Effects of low thinning on carbon dioxide fluxes in a mixed hemiboreal forest. Agricu For Meteorol 262:59–70. https://doi.org/10.1016/j.agrformet.2018.06.021

    Article  Google Scholar 

  • Liu L, Wang X, Lajeunesse MJ, Miao G, Piao S, Wan S, Wu Y, Wang Z, Yang S, Li P, Deng M (2016) A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob Chang Biol 22(4):1394–1405. https://doi.org/10.1111/gcb.13156

    Article  Google Scholar 

  • Liu X, Yang T, Wang Q, Huang F, Li L (2018) Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: A meta-analysis. Sci Total Environ 618:1658–1664. https://doi.org/10.1016/j.scitotenv.2017.10.009

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the Temperature Dependence of Soil Respiration. Funct Ecol 8:315

    Google Scholar 

  • Mauder M, Foken T (2011) Documentation and instruction manual of the eddy-covariance software package TK3

  • Meir P, Wood TE, Galbraith DR, Brando PM, Da Costa AC, Rowland L, Ferreira LV (2015) Threshold responses to soil moisture deficit by trees and soil in tropical rain forests: insights from field experiments. BioSci 65(9):882–892. https://doi.org/10.1093/biosci/biv107

    Article  Google Scholar 

  • Mendes KR, Campos S, da Silva LL, Mutti PR, Ferreira RR, Medeiros SS, Perez-Marin AM, Marques TV, Ramos TM, de Lima Vieira MM, Oliveira CP (2020) Seasonal variation in net ecosystem CO 2 exchange of a Brazilian seasonally dry tropical forest. Sci Rep 10(1):1–16. https://doi.org/10.1038/s41598-020-66415-w

    Article  Google Scholar 

  • Migliavacca M, Reichstein M, Richardson AD, Mahecha MD, Cremonese E, Delpierre N, Galvagno M, Law BE, Wohlfahrt G, Andrew Black T, Carvalhais N (2015) Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests. Glob Chang Biol 21(1):363–376. https://doi.org/10.1111/gcb.12671

    Article  Google Scholar 

  • MoEF&CC (2015) India First Biennial Update Report to the United Nations Framework Convention on Climate Change Government of India. MoEFCC, Gov India:1–179. http://www.moef.gov.in/sites/default/files/indbur1.pdf

  • Moncrieff J, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending, and filtering of eddy covariance time series. In: Handbook of Micrometeorology. Springer, Dordrecht, pp 7–31

    Google Scholar 

  • Moncrieff JB, Massheder JM, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611. https://doi.org/10.1016/S0022-1694(96)03194-0

    Article  Google Scholar 

  • Mukherjee S, Sekar KC, Lohani P, Kumar K, Patra P, Ishijima K (2018) Investigation of scale interaction between rainfall and ecosystem carbon exchange ofWestern Himalayan Pine dominated vegetation. Biogeosciences Discuss:1–23

  • Nandy S, Singh RP, Ghosh S, Watham T, Kushwaha SPS, Kumar AS, Dadhwal VK (2017) Neural network-based modelling for forest biomass assessment. Carbon Manag 8(4):305–317. https://doi.org/10.1080/17583004.2017.1357402

    Article  Google Scholar 

  • Oren R, Pataki DE (2001) Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia 127:549–559

    Google Scholar 

  • Pachauri RK, Meyer L (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A Large and Persistent Carbon Sink in the World’s Forests. Science 333:988–993

    Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosci 3:571–583

    Google Scholar 

  • Patel NR, Padalia H, Kushwaha SPS, Nandy S, Watham T, Ahongshangbam J, Kumar R, Dadhwal VK, Kumar AS (2019) CO 2 Flux Tower and Remote Sensing: Tools for Monitoring Carbon Exchange over Ecosystem Scale in Northwest Himalaya. In: Remote Sensing of Northwest Himalayan Ecosystems. Springer, Singapore, pp 313–327

    Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168:241–257

    Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA, Peel MC, Finlayson BL, Updated TAM (2007) Updated world map of the Köppen-Geiger climate classification To cite this version: HAL Id : hal-00298818 Updated world map of the K oppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Google Scholar 

  • Pillai ND, Nandy S, Patel NR, Srinet R, Watham T, Chauhan P (2019) Integration of eddy covariance and process-based model for the intra-annual variability of carbon fluxes in an Indian tropical forest. Biodiv Conserv 28(8–9):2123–2141. https://doi.org/10.1007/s10531-019-01770-3

    Article  Google Scholar 

  • Planning commission (2007) Planning commission, Government of India

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R (2008) Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: A six-year-minirhizotron study. Glob Chang Biol 14:588–602

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Raupach MR, Canadell JG, Le Quéré C (2008) Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5:1601–1613

    Google Scholar 

  • Reichstein M, Beer C (2008) Soil respiration across scales: The importance of a model–data integration framework for data interpretation. J Plant Nutr Soil Sci 171(3):344–354. https://doi.org/10.1002/jpln.200700075

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob Chang Biol 11:1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH (2007) Environmental variation is directly responsible for short- but notlong-term variation in forest-atmosphere carbon exchange. Glob Chang Biol 13:788–803. https://doi.org/10.1111/j.1365-2486.2007.01330.x

    Article  Google Scholar 

  • Rodda SR, Thumaty KC, Jha CS, Dadhwal VK (2016) Seasonal variations of carbon dioxide, water vapor and energy fluxes in tropical Indian mangroves. For 7(2):35. https://doi.org/10.3390/f7020035

    Article  Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995) CO2 Fluxes over Plant Canopies and Solar Radiation: A Review. Adv Ecol Res 26:1–68. https://doi.org/10.1016/S0065-2504(08)60063-X

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, Da Rocha HR, De Camargo PB, Crill P, Daube BC, De Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Pyle EH, Rice AH, Silva H (2003) Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses. Sci 302:1554–1557

    Google Scholar 

  • Sarma D, Baruah KK, Chakraborty S, Karipot A, Baruah R (2019) Impact of ecosystem respiration on carbon balance in a semi-evergreen forest of Northeast India. Curr Sci 116:751–757

    Google Scholar 

  • Satya Upreti DK, Nayaka S (2005) Shorea robusta—an excellent host tree for lichen growth in India. Curr Sci 89(4):594–595

    Google Scholar 

  • Shao J, Zhou X, Luo Y, Li B, Aurela M, Billesbach D, Blanken PD, Bracho R, Chen J, Fischer M, Fu Y (2016) Direct and indirect effects of climatic variations on the interannual variability in net ecosystem exchange across terrestrial ecosystems. Tellus B: Chem Phys Meteorol 68(1):30575. https://doi.org/10.3402/tellusb.v68.30575

    Article  Google Scholar 

  • Singh KP, Kushwaha CP (2005) Paradox of leaf phenology - Shorea robusta is a semi-evergreen species in tropical dry deciduous forests in India 2005.pdf. Curr Sci 88:1820–1824

    Google Scholar 

  • Singh N, Parida BR, Chakraborty JS, Patel NR (2019) Net ecosystem exchange of CO2 in deciduous pine forest of lower western Himalaya, India. Res 8(2):98. https://doi.org/10.3390/resources8020098

    Article  Google Scholar 

  • Sinha SK, Padalia H, Dasgupta A, Verrelst J, Rivera JP (2020a) Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. Int J Appl Earth Obs Geoinform 86:102027. https://doi.org/10.1016/j.jag.2019.102027

    Article  Google Scholar 

  • Sinha SK, Padalia H, Patel NR, Chauhan P (2020b) Estimation of Seasonal Sun-Induced Fluorescence Dynamics of Indian Tropical Deciduous Forests using SCOPE and Sentinel-2 MSI. Int J Appl Earth Observ Geoinform 91:102155. https://doi.org/10.1016/j.jag.2020.102155

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-State Aerobic Microbial Activity as a Function of Soil Water Content. Soil Sci Soc Am J 54:1619–1625. https://doi.org/10.2136/sssaj1990.03615995005400060018x

    Article  Google Scholar 

  • Tan ZH, Zhang YP, Schaefer D, Yu GR, Liang N, Song QH (2011) An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos Environ 45:1548–1554. https://doi.org/10.1016/j.atmosenv.2010.12.041

    Article  Google Scholar 

  • Tonidandel S, LeBreton JM (2015) RWA web: A free, comprehensive, web-based, and user-friendly tool for relative weight analyses. J Bus Psychol 30(2):207–216. https://doi.org/10.1007/s10869-014-9351-z

    Article  Google Scholar 

  • Van Dijk AI, Dolman AJ (2004) Estimates of CO2 uptake and release among European forests based on eddy covariance data. Glob Chang Biol 10(9):1445–1459. https://doi.org/10.1111/j.1365-2486.2004.00831.x

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Google Scholar 

  • Wang HM, Saigusa N, Zu YG, Wang WJ, Yamamoto S, Kondo H (2008) Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China. J For Res 19(1):1–10. https://doi.org/10.1007/s11676-008-0001-z

    Article  Google Scholar 

  • Wang J, Wu C, Zhang C, Ju W, Wang X, Chen Z, Fang B (2018) Improved modelling of gross primary productivity (GPP) by better representation of plant phenological indicators from remote sensing using a process model. Ecol Ind 88:332–340. https://doi.org/10.1016/j.ecolind.2018.01.042

    Article  Google Scholar 

  • Wang X, Piao S, Ciais P, Friedlingstein P, Myneni RB, Cox P, Heimann M, Miller J, Peng S, Wang T, Yang H, Chen A (2014) A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506:212–215. https://doi.org/10.1038/nature12915

    Article  Google Scholar 

  • Watham T, Patel NR, Kushwaha SPS, Dadhwal VK, Senthil Kumar A (2017) Evaluation of remote-sensing-based models of gross primary productivity over indian sal forest using flux tower and MODIS satellite data. Int J Remote Sens 38:5069–5090. https://doi.org/10.1080/01431161.2017.1333653

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100. https://doi.org/10.1002/qj.49710644707

    Article  Google Scholar 

  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018) Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosci 15(16): 5015–5030. https://doi.org/10.5194/bg-15-5015-2018

  • Xu M, Qi Y (2001) Soil-surface CO2efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob Chang Biol 7:667–677

    Google Scholar 

  • Yan J, Zhang Y, Yu G, Zhou G, Zhang L, Li K, Tan Z, Sha L (2013) Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. Agric For Meteorol 182–183:257–265. https://doi.org/10.1016/j.agrformet.2013.03.002

    Article  Google Scholar 

  • Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, Wang HM, Zhou GS, Jia BR, Xiang WH, Li YN, Zhao L, Wang YF, Shi PL, Chen SP, Xin XP, Zhao FH, Wang YY, Tong CL (2013) Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Chang Biol 19:798–810. https://doi.org/10.1111/gcb.12079

    Article  Google Scholar 

  • Zhang L, Yu G, Sun X, Wen X, Ren C, Song X, Liu Y, Guan D, Yan J, Zhang Y (2006) Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Sci China Ser D: Earth Sci 49(2):47–62. https://doi.org/10.1007/s11430-006-8047-2

    Article  Google Scholar 

  • Zhang M, Chen S, Jiang H, Peng C, Zhang J, Zhou G (2020) The impact of intensive management on net ecosystem productivity and net primary productivity of a Lei bamboo forest. Ecol Model 435:109248. https://doi.org/10.1016/j.ecolmodel.2020.109248

    Article  Google Scholar 

  • Zhang Q, Cheng YB, Lyapustin AI, Wang Y, Xiao X, Suyker A, Verma S, Tan B, Middleton EM (2014) Estimation of crop gross primary production (GPP): I. impact of MODIS observation footprint and impact of vegetation BRDF characteristics. Agric For Meteor 191:51–63. https://doi.org/10.3390/rs10091346

    Article  Google Scholar 

  • Zhou L, Zhou G, Jia Q (2009) Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquat Bot 91:91–98. https://doi.org/10.1016/j.aquabot.2009.03.002

    Article  Google Scholar 

Download references

Acknowledgements

The present study was carried out as a part of Soil-Vegetation-Atmosphere-Flux (SVAF) of National Carbon Project (NCP) supported by ISRO-Geosphere-Biosphere Programme. The authors wish to acknowledge Divisional Forest Officers and staff of Dehradun Forest Division and Central Tarai Forest Division, Government of Uttarakhand, India, and field staff of BFS and HFS for field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitendra Padalia.

Additional information

Responsible Editor: Chris D. Evans

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watham, T., Srinet, R., Nandy, S. et al. Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochemistry 151, 291–311 (2020). https://doi.org/10.1007/s10533-020-00727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-020-00727-x

Keywords

Navigation