Skip to main content

Advertisement

Log in

An approach at estimating present day base cation weathering rates: a case study for the Hermine watershed, Canada

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A new methodological approach is described for estimating Ca, Mg and K fluxes from soil mineral weathering. This method combines Na flux in surface waters in the Hermine watershed with base cation (BC) concentrations to Na molar ratios from the soil weatherable pool obtained using sequential extraction method. Comparison of BC:Na molar ratios of the weatherable pool with those from other compartments of the watershed suggests possible accumulation of base cations in some areas of the watershed, while losses or minimal changes are observed in others. On average, present day Na weathering rates estimated using the watershed input–output budget method was 0.26 (range 0.16–0.36) kmolc ha−1 yearr−1, over the period of 1995–2006. For Ca, Mg and K, present day weathering rates estimated with the new methodological approach averaged 0.44 (range 0.27–0.60), 0.11 (range 0.07–0.15) and 0.02 (range 0.01–0.02) kmolc ha−1 year−1, respectively. These values are within the range of present day rates previously calculated for the same site and for forested soils from similar granitic environments using other methods. Candidate models for predicting BC weathering rates on individual annual observations were developed using Akaike’s information criterion. The best model includes the number of frost days (inverse relationship) and explained 51% of the variation in total BC weathering rates. The newly developed method may be applicable to other watersheds, providing yearly estimates of nutrient BC at the watershed scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali G, Roy AG, Turmel M-C, Courchesne F (2010) Multivariate analysis as a tool to infer hydrologic response types and controlling variables in a humid temperate catchment. Hydrol Process 24:2912–2923

    Article  Google Scholar 

  • Amonette JE, Zelazny LW (1994) Quantitative methods in soil mineralogy. Soil Science Society of America, Madison

    Google Scholar 

  • Anderson DR (2008) Model Based Inference in the Life Sciences: A Primer on Evidence. Springer-Verlag, New York

    Book  Google Scholar 

  • Augustin F, Houle D, Gagnon C, Courchesne F (2015a) Long-term mineral weathering in forested catchments of the Canadian shield, Québec. Geod 247–248:12–23

    Article  Google Scholar 

  • Augustin F, Houle D, Gagnon C, Couture S, Courchesne F (2015b) Partitioning the impact of environmental factors on lake concentrations and catchment budgets for base cations in forested ecosystems. Appl Geochem 53:1–12

    Article  Google Scholar 

  • Augustin F, Houle D, Gagnon C, Courchesne F (2016) Evaluation of three methods for estimating the weathering rates of base cations in forested catchments. CATENA 144:1–10

    Article  Google Scholar 

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133(1):25–46

    Article  Google Scholar 

  • Bailey S, Buso D, Likens G (2003) Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecol 84:471–484

    Article  Google Scholar 

  • Bain DC, Mellor A, Robertson-Rintoul MSE, Buckland ST (1993) Variations in weathering processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland. Geod 57:275–293

    Article  Google Scholar 

  • Bélanger N, Côté B, Courchesne F, Fyles JW, Warfvinge P, Hendershot WH (2002a) Simulation of soil chemistry and nutrient availability in a forested ecosystem of southern Quebec—1. Reconstruction of the time-series files of nutrient cycling using the MAKEDEP model. Environmental Modelling and Software 17:427–445

    Article  Google Scholar 

  • Bélanger N, Courchesne F, Côté B, Fyles JW, Warfvinge P, Hendershot WH (2002b) Simulation of soil chemistry and nutrient availability in a forested ecosytem of southern Quebec. Part II. Application of the SAFE model. Environmental Modelling & Software 17:447–465

    Article  Google Scholar 

  • Bélanger N, Holmden C, Courchesne F, Côté B, Hendershot WH (2012) Constraining soil mineral weathering 87Sr/86Sr for calcium apportionment studies of a deciduous forest growing on soils developed from granitoid igneous rocks. Geoderma 185–186:84–96

    Article  Google Scholar 

  • Biron P, Roy AG, Courchesne F, Hendershot WH, Côté B, Binkley Cole DW (1999) Soil changes in forest ecosystems: J.W. Fyles. 1999. The effects of antecedent moisture conditions on Evidence for and probable causes. Proc R Soc Edinburgh 97B: the relationship of hydrology to hydrochemistry in a small forested, 81–116. Watershed. Hydrol Process 13:1541–1555

    Article  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nat 417:729–731

    Article  Google Scholar 

  • Brantley SL, Stillings LL (1994) An integrated model for feldspar dissolution under acid conditions. Goldschmidt conference Edinburgh

  • Brantley SL, Godhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the Critical Zone. Elements 3:307–314

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York

    Google Scholar 

  • Buss HL, Sak P, Webb RM, Brantley S (2008) Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: coupling oxidation, dissolution and fracturing. Geochim Cosmochim Acta 72:4488–4507

    Article  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW, Christopher SF, Driscoll CT, Fernandez IJ, Groffman PM, Houle D, Kiekbusch J, Magill AH, Mitchell MJ, Ollinger SV (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284

    Article  Google Scholar 

  • Clayton JL (1979) Nutrient supply to soil by rock weathering. Impact of Intensive Harvesting on Forest Nutrient Cycling. State University of New York, College of Environmental Science and Forestry, Syracuse, pp 75–96

    Google Scholar 

  • Combs SM, Nathan MV (1998) Soil Organic Matter. In: Brown, J.R., Ed., Recommended Chemical Soil Test Procedures for the North Central Region, NCR Publication No. 221, Missouri Agricultural Experiment Station SB 1001, University of Missouri, Columbia, 53–58

  • Cosby BJ, Ferrier RC, Jenkins A, Wright RF (2001) Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5:499–517

    Article  Google Scholar 

  • Courchesne F, Gobran GR (1997) Mineralogical variations of bulk and rhizosphere soils from a Norway Spruce stand, Southwestern Sweden. Soil Sci Soc Am J 61:1245–1249

    Article  Google Scholar 

  • Courchesne F, Turmel M-C, Beauchemin P (1996) Magnesium and potassium release by weathering in spodosols: grain surface coating effects. Soil Sci Soc Am J 60:1188–1196

    Article  Google Scholar 

  • Courchesne F, Roy AG, Biron PM, Côté B, Fyles J, Hendershot WH (2001) Fluctuations of climatic conditions, elemental cycling and forest growth at the watershed scale. J. Environ. Monitor Assess 67:161–177

    Article  Google Scholar 

  • Courchesne F, Hallé JP, Turmel MC (2002) Bilans élémentaires holocènes et altération des minéraux dans trois sols forestiers du Québec méridional. Geogr Phys et Quat 56(1):5–17

    Google Scholar 

  • Courchesne F, Côté B, Fyles J, Hendershot WH, Biron PM, Roy AG, Turmel MC (2005) Recent changes in soil chemistry in a forested ecosystem of southern Québec, Canada. Soil Sci Soc Am J 69:1298–1313

    Article  Google Scholar 

  • Couture RA, Dymek RF (1996) A reexamination of absorption and enhancement effects in X-ray fluorescence trace element analysis. Am Mineral 81:639–650

    Article  Google Scholar 

  • Critelli T, Marini L, Schott J, Mavromatis V, Apollaro C, Rinder T, De Rosa R, Oelkers EH (2014) Can the dissolution rates of individual minerals be used to describe whole rock dissolution? Geophys Res Abst, 16, EGU2014-11285

  • Development Core Team R (2016) R: A Language and Environment for Statistical Computing. Austria, Vienna

    Google Scholar 

  • Dorn RI (1995) Digital processing of back-scatter electron imagery: a microscopic approach to quantifying chemical weathering. GSA Bull 107(6):725–741

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvata P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Gislason SR, Oelkers EH, Eiriksdottir ES, Kardjilov MI, Gisladottir G, Sigfusson B, Snorrason A, Elefsen S, Hardardottir J, Torssander P, Oskarsson N (2009) Direct evidence of the feedback between climate and weathering. Earth Planet Sci Let 277:213–222

    Article  Google Scholar 

  • Gordon SJ (2005) Effects of environmental factors on the chemical weathering of plagioclase in Hawaiian basalt. Phys Geogr 26(1):69–84

    Article  Google Scholar 

  • Gudbrandsson S, Wolff-Boenisch D, Gislason SR, Oelkers EH (2011) An experimental study of crystalline basalt dissolution from 2 ≤ pH ≤ 11 and temperatures from 5 to 75 & #xB0;C. Geochim Cosmochim Acta 75:5496–5509

    Article  Google Scholar 

  • Hendershot WH, Lalande H, Duquette M (2007a) Soil reaction and exchangeable acidity. In M. R. Carter and E. G. Gregorich, eds. Soil sampling and methods of analysis. 2nd ed. Chapter 16. CRC Press, Boca Raton, FL

  • Hendershot WH, Lalande H, Duquette M (2007b) Ion exchange and exchangeable cations. In M. R. Carter and E. G. Gregorich, eds. Soil sampling and methods of analysis. 2nd ed. Chapter 18. CRC Press, Boca Raton, FL

  • Horton TW, Chamberlain CP, Fantie M, Blum JD (1999) Chemical weathering and lithologic controls of water chemistry in a high-elevation river system: clark’s Fork of the Yellowstone River. Wyoming and Montana. Water Resour Res 35(5):1643–1655

    Article  Google Scholar 

  • Houle D, Couture S, Gagnon C (2010) Relative role of decreasing precipitation sulfate and climate on recent lake recovery. Global Biogeochem Cycles 24: GB4029

  • Houle D, Lamoureux P, Bélanger N, Bouchard M, Gagnon C, Couture S, Bouffard A (2012) Soil weathering rates in 21 catchments of the Canadian Shield. Hydrol Earth Syst Sci 16:685–697

    Article  Google Scholar 

  • Johnson CE, Driscoll CT, Siccama TG (2000) Likens, GE (2000) Element Fluxes and Landscape Position in a Northern Hardwood Forest Watershed Ecosystem. Ecosystems 3:159–184

    Article  Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem, 2nd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Likens GE, Bormann EH, Eaton JS, Pierce RS, Johnson NM (1967) The calcium, magnesium, potassium, and sodium budgets for a small forested ecosystem. Ecol 48:772–785

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC (1996) Long-term effects of acid rain: response and recovery of a forest ecosystem. Science 272:244–246

    Article  Google Scholar 

  • Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochem 41:89–173

    Article  Google Scholar 

  • Mast MA, Drever JI, Barron J (1990) Chemical weathering in the Lock Vale watershed. Rocky Mountain National Park, Colorado, Water Resour Res 26:2971–2978

    Google Scholar 

  • McGerrigle JI (1976) Région de Saint-Hippolyte/Sainte-Adèle (Québec). Rapport Géologique No. 179. Ministère des Richesses Naturelles, Ottawa, p 41

    Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allègre CJ (2003) Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim Cosmochim Acta 67:1305–1329

    Article  Google Scholar 

  • Nezat CA, Blum JD, Klaue A, Johnson CE, Siccama TG (2004) Influence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental Forest, New Hampshire. USA. Geochim et Cosmochim Acta 68(14):3065–3078

    Article  Google Scholar 

  • Nezat CA, Blum JD, Yanai RD, Hamburg SP (2007) A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Appl Geochem 22:2406–2421

    Article  Google Scholar 

  • Oelkers EH, Gislason SR (2001) The mechanism, rates, and consequences of basaltic glass dissolution: i. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si, and oxalic acid concentration at °C and pH 3 and 11. Geochim Cosmochim Acta 65:3671–3681

    Article  Google Scholar 

  • Oelkers EH, Schott J (2001) An experimental study of enstatite dissolution rates as a function of pH, temperature, and aqueous Mg and Si concentration and the mechanism of pyroxene/pyroxenoid dissolution. Geochim Cosmochim Acta 65:1219–1231

    Article  Google Scholar 

  • Ouimet R, Duchesne L (2005) Base cation mineral weathering and total release rates from soils in three calibrated forest watersheds on the Canadian Boreal Shield. Can J Soil Sci 85:245–260

    Article  Google Scholar 

  • Régnière J, Saint-Amant R, Bechard A (2014) BioSIM 10 – User’s manual. Natural. Resource Canada, Canadian Forest Service. Laurentian For Cent Québec (Quebec). Inf. Rep. LAU-X-137E: https://cfs.nrcan.gc.ca/publications?id=34818

  • Riebe CS, Kirchner JW, Finkel RC (2004) Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet Sci Lett 218:421–434

    Article  Google Scholar 

  • Savage C (2001) Recolonisation forestière dans les Basses Laurentides au sud du domaine climacique de l’érablière à bouleau jaune. Université de Montréal, Mémoire de M.Sc

    Google Scholar 

  • Schaller M, Blum JD, Hamburg SP, Vadeboncoeur MA (2009) Spatial variability of long-term chemical weathering rates in the White Mountains, New Hampshire, USA. Geod 154:294–301

    Article  Google Scholar 

  • Soil Classification Working Group (1998) The Canadian System of Soil Classification, 3rd ed. Agriculture and Agri-Food Canada Publication 1646, 187 pp

  • Soil Survey Staff (1999) Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, 2nd edn. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook, Washington DC, p 436

    Google Scholar 

  • Sverdrup H (1990) The Kinetics of Base Cation Release Due to Chemical Weathering. Lund University Press, Sweden pp 246

    Google Scholar 

  • Sverdrup H (2009) Chemical weathering of soil minerals and the role of biological processes. Fungal Biol Rev 23(4):94–100

    Article  Google Scholar 

  • Sverdrup H, Warfvinge P (1993) Calculating field weathering rates using a mechanistic geochemical model PROFILE. Appl Geochem 8(3):273–283

    Article  Google Scholar 

  • Tack FMG, Verloo MG (1995) Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. Int J Environ Anal Chem 59:225–238

    Article  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Velbel MA (1985) Geochemical mass balances and weathering rates in forested watersheds of the Southern Blue Ridge. Am J Sci 285:904–930

    Article  Google Scholar 

  • Velbel MA (1993) Temperature dependence of silicate weathering in nature: how strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geol 21:1059–1062

    Article  Google Scholar 

  • Watmough SA, Dillon PJ (2003) Base cation and nitrogen budgets for a mixed hardwood catchment in south-central Ontario. Ecosystems 6(7):675–693

    Article  Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202(3–4):479–506

    Article  Google Scholar 

  • White AF, Buss HL (2013) Natural weathering rates of silicate minerals. In: Drever JI (ed) Surface and ground water, weathering and soils, 2nd edn. Elsevier, Amsterdam, pp 115–155

    Google Scholar 

  • White AF, Schulz MS, Stonestrom DA, Vivit DV, Fitzpatrick J, Bullen TD, Maher K, Blum AE (2009) Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochim et Cosmochim Acta 73:2769–2803

    Article  Google Scholar 

  • Whitfield CJ, Watmough AA, Aherne J, Dillon PJ (2006) A comparison of weathering rates for acid-sensitive catchments in Nova Scotia, Canada and their impact on critical load calculations. Geod 136:899–911

    Article  Google Scholar 

  • Whitfield CJ, Aherne J, Watmough AA, McDonald M (2010) Estimating the sensitivity of forest soils to acid deposition in the Athabasca Oil Sands Region. Alberta. J Limnol 69(Suppl. 1):201–208

    Article  Google Scholar 

  • Whittig LD, Allardice WR (1986) X-ray diffraction techniques. In: Klute A (ed) Methods of soil analysis, part 1: Physical and mineralogical methods, 2nd edn. American Society of Agronomy, Madison, pp 331–362

    Google Scholar 

Download references

Acknowledgements

The work reported in this paper was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant number: 42251-2010). We wish to thank Julien Arsenault and Marie-Claude Turmel for assistance with sample collection and laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fougère Augustin.

Additional information

Responsible Editor: Steven Perakis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustin, F., Houle, D. & Courchesne, F. An approach at estimating present day base cation weathering rates: a case study for the Hermine watershed, Canada. Biogeochemistry 140, 127–144 (2018). https://doi.org/10.1007/s10533-018-0479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-018-0479-1

Keywords

Navigation