Skip to main content

Advertisement

Log in

Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments

  • Review article
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

There is a variety of methodologies used in the aquatic sciences and soil sciences for extracting different forms of Si from sediments and soils. However, a comparison of the published extraction techniques is lacking. Here we review the methodologies used to extract different Si fractions from soils and sediments. Methods were classified in those to assess plant-available Si and those to extract Si from amorphous silica and allophane. Plant-available Si is supposed to comprise silicic acid in soil solution and adsorbed to soil particles. Extraction techniques for plant-available Si include extractions with water, CaCl2, acetate, acetic acid, phosphate, H2SO3, H2SO4, and citrate. The extractants show different capabilites to desorb silicic acid, with H2SO3, H2SO4 and citrate having the greater extraction potential. The most common extractants to dissolve amorphous silica from soils and aquatic sediments are NaOH and Na2CO3, but both also dissolve crystalline silicates to varying degrees. In soils moreover Tiron is used to dissolve amorphous silica, while oxalate is used to dissolve allophanes and imogolite-type materials. Most techniques analyzing for biogenic silica in aquatic environments use a correction method to identify mineral derived Si. By contrast, in the soil sciences no correction methods are used although pedologists are well aware of the overestimation of amorphous silica by the NaOH extraction, which is most commonly used to extract silica from soils. It is recommended that soil scientists begin to use the techniques developed in the aquatic sciences, since it seems impossible to extract amorphous Si from soils completely without dissolving some of the crystalline silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Acquaye J. Tinsley (1965) Soluble silica in soils E.G. Hallsworth D.V. Crawford (Eds) Experimental Pedology Proceedings of the Eleventh Easter School in Agricultural Science, University of Nottingham, 1964 Butterworths, London 126–148

    Google Scholar 

  • R.W. Arnseth R.S. Turner (1988) ArticleTitleSequential extraction of iron, manganesealuminium and silicon in soil from two contrasting watersheds Soil Sci. Soc. Am. J. 52 1801–1807 Occurrence Handle10.2136/sssaj1988.03615995005200060052x

    Article  Google Scholar 

  • A.S. Ayres (1966) ArticleTitleCalcium silicate slag as a growth stimulant for sugarcane on low-silicon soils Soil Sci. 101 IssueID3 216–227

    Google Scholar 

  • R.S. Beckwith R. Reeve (1963) ArticleTitleStudies on soluble silica in soils. I. The sorption of silicic acid by soils and minerals Aust. J. Soil Res. 1 157–168 Occurrence Handle10.1071/SR9630157

    Article  Google Scholar 

  • R.S. Beckwith R. Reeve (1964) ArticleTitleStudies on soluble silica in soils. II. The release of monosilicic acid from soils Aust. J. Soil Res. 2 33–45 Occurrence Handle10.1071/SR9640033

    Article  Google Scholar 

  • Berthelsen S., Noble A.D. and Garside A.L. 2001. Silicon research down under: pastpresent and future. In: Datnoff L.E., Snyder G.H. and Korndörfer G.H. (eds), Silicon Deposition in Higher Plants. Silicon in Agriculture. Elsevier Science, pp. 241–255.

  • V. Biermans L. Baert (1977) ArticleTitleSelective extraction of the amorphous Al, Fe and Si oxides using an alkaline Tiron solution Clay Minerals 12 127–135

    Google Scholar 

  • Breuer J. 1994. Hartsetzende Böden Nordkameruns. Ph.D. Thesis. Soil Science Department, Technical University of Munich – Weihenstephan, Germany, 189 pp.

  • J. Breuer L. Herrmann (1999) ArticleTitleEignung der Extraktion mit Natriumbikarbonat für die Charakterisierung von bodenbildenden Prozessen Mittlg. Dtsch. Bodenk. Ges. 91 1375–1378

    Google Scholar 

  • D.J. Conley (1998) ArticleTitleAn interlaboratory comparison for the measurement of biogenic silica in sediments Marine Chem. 63 39–48 Occurrence Handle10.1016/S0304-4203(98)00049-8

    Article  Google Scholar 

  • D.J. Conley C.L. Schelske (2001) Biogenic silica J.P. Smol H.J.B. Birks W.M. Last (Eds) Tracking Environmental Changes in Lake Sediments: Volume 3: Terrestrial, Algal, and Siliceous Indicators Kluwer Academic Publishers Dordrecht 281–293

    Google Scholar 

  • Conley D.J., Sommer M., Meunier J.D., Kaczorek D. and Saccone L. 2005. Silicon in the terrestrial biogeosphere. In: Ittekot V., Humborg C. and Garnier J. (eds), Land–Ocean Nutrient Fluxes: Silica Cycle. SCOPE, in press.

  • H.L. Conway J.I. Parker E.M. Yaguchi D.L. Mellinger (1977) ArticleTitleBiological utilization and regeneration of silicon in Lake Michigan J. Fish. Res. Board Can. 34 537–544

    Google Scholar 

  • L.E. Datnoff G.H. Snyder G.H. Korndörfer (2001) Silicon in Agriculture Elsevier Amsterdam

    Google Scholar 

  • L. Lima Rodrigues ParticleDe S.H. Daroub W.R. Rice G.H. Snyder (2003) ArticleTitleComparison of three soil test methods for estimating plant-available silicon Commun. Soil Sci. Plant Anal. 34 2059–2071 Occurrence Handle10.1081/CSS-120024048

    Article  Google Scholar 

  • DeMaster D.J. 1979. The marine budgets of silica and 32Si. Ph.D. Dissertation, Yale University, 308 pp.

  • DeMaster D.J. 1981. The supply and accumulation of silica in the marine environments. Geochim. Cosmochim. Acta: 1715–1732.

  • DeMaster D.J. 1991. Measuring biogenic silica in marine sediments and suspended matter. Geophysical Monograph 63, America Geophysical Union, pp. 363–367.

  • L.A. Derry A.C. Kurtz K. Ziegler O.A. Chadwick (2005) ArticleTitleBiological control of terrestrial silica cycling and export fluxes to watersheds Nature 433 728–731 Occurrence Handle10.1038/nature03299

    Article  Google Scholar 

  • M. Dietzel (2000) ArticleTitleDissolution of silicates and the stability of polysilicic acid Geochim. Cosmochim. Acta 64 3275–3281 Occurrence Handle10.1016/S0016-7037(00)00426-9

    Article  Google Scholar 

  • M. Dietzel (2002) Interaction of polysilicic and monosilicic acid with mineral surfaces I. Stober K. Bucher (Eds) Water–Rock Interaction Kluwer The Netherlands 207–235

    Google Scholar 

  • L.R. Drees L.P. Wilding N.E. Smeck A.L. Sankayi (1989) Silica in soils: quartz and disordered silica polymorphs J.B. Dixon S.B. Weed (Eds) Minerals in Soil Environments Soil Science Society of America Book Series No. 1 Madison, WI, USA 913–974

    Google Scholar 

  • H.A. Ewing E.A. Nater (2002) ArticleTitleHolocene soil development on Till and Outwash inferred from Lake-Sediment Geochemistry in Michigan and Wisconsin Quatern. Res. 57 234–243 Occurrence Handle10.1006/qres.2001.2303

    Article  Google Scholar 

  • D.W. Eggiman F.T. Manheim P.R. Betzer (1980) ArticleTitleDissolution and analysis of amorphous silica in marine sediments J. Sed. Petr. 51 215–225

    Google Scholar 

  • E. Epstein (1994) ArticleTitleThe anomaly of silicon in plant biology Proc. Natl. Acad. Sci. 91 11–17 Occurrence Handle10.1073/pnas.91.1.11

    Article  Google Scholar 

  • V. Farmer E. Delbos J.D. Miller (2005) ArticleTitleThe role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams Geoderma 127 71–79 Occurrence Handle10.1016/j.geoderma.2004.11.014

    Article  Google Scholar 

  • E.A.C. Follett W.J. McHardy B.D. Mitchell B.F.L. Smith (1965) ArticleTitleChemical dissolution techniques in the study of soil clays: Part I Clay Minerals 6 23–34

    Google Scholar 

  • M.D. Foster (1953) ArticleTitleThe determination of free silica and free alumina in montmorillonites Geochim. Cosmochim. Acta 3 143–154 Occurrence Handle10.1016/0016-7037(53)90003-9

    Article  Google Scholar 

  • R.L. Fox J.A. Silva O.R. Younge D.L. Pluncknett G.D. Sherman (1967) ArticleTitleSoil and plant silicon and silicate response by sugarcane Soil Sci. Soc. Am. Proc. 31 775–779 Occurrence Handle10.2136/sssaj1967.03615995003100060021x

    Article  Google Scholar 

  • F. Gérard M. François J. Ranger (2002) ArticleTitleProcesses controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (RhôneFrance) Geoderma 107 197–226 Occurrence Handle10.1016/S0016-7061(01)00149-5

    Article  Google Scholar 

  • K. Grasshoff M. Ehrhardt K. Kremling (1983) Methods of Seawater Analysis EditionNumber2 Verlag Chemie Weinheim 417

    Google Scholar 

  • H.C.B. Hansen B. Raben-Lange K. Raulund-Rasmussen O.K. Borggaard (1994) ArticleTitleMonosilicate adsorption by ferrihydrite and goethite at pH 3–6 Soil Sci. 158 40–46

    Google Scholar 

  • Hashimoto J. and Jackson M.L. 1960. Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Proceedings of the 7th Nat. Conf. Clays and Clay Minerals, Washington, DC, October 20–23, 1958, pp. 102–113.

  • M.B.C. Haysom L.S. Chapman (1975) ArticleTitleSome aspects of the calcium silicate trials at Mackay Proc. Austr. Sugar Cane Technol. 42 117–122

    Google Scholar 

  • J. Herbauts F.A. Dehalu W. Gruber (1994) ArticleTitleQuantitative determination of plant opal content in soils, using a combined method of heavy liquid separation and alkali dissolution Eur. J. Soil Sci. 45 379–385 Occurrence Handle10.1111/j.1365-2389.1994.tb00522.x

    Article  Google Scholar 

  • L. Herrmann K. Stahr (1995) ArticleTitleDie Verwitterung lößähnlicher Saharastäube: Ein Modellexperiment Mittlgn. Dtsch. Bodenkundl. Gesellsch. 76/II 1433–1436

    Google Scholar 

  • A.P. Hurney (1973) ArticleTitleA progress report on the calcium silicate investigations Proc. Aust. Sugar Cane Technol. 40 109–113

    Google Scholar 

  • D.J. Hydes P.S. Liss (1976) ArticleTitleFluorimetric method for the determination of low concentratios of dissolved aluminium in natural waters Analyst 10 922–931 Occurrence Handle10.1039/an9760100922

    Article  Google Scholar 

  • R.K. Iler (1979) The Chemistry of Silica Wiley and Sons New York 621

    Google Scholar 

  • K. Imaizumi S. Yoshida (1958) ArticleTitleEdaphological studies on silicon supplying power of paddy soils Bull. Natl. Inst. Agric. Sci. (Jpn.) B 8 261–304

    Google Scholar 

  • R.L. Jones (1969) ArticleTitleDetermination of opal in soil by alkali dissolution analysis Soil Sci. Soc. Am. Proc. 33 976–978 Occurrence Handle10.2136/sssaj1969.03615995003300060050x

    Article  Google Scholar 

  • R.L. Jones A.H. Beavers (1964) ArticleTitleAspects of catenary and depth distribution of opal phytoliths in Illinois soils Soil Sci. Soc. Am. Proc. 28 413–416 Occurrence Handle10.2136/sssaj1964.03615995002800030033x

    Article  Google Scholar 

  • Karathanasis A.D. 1989. Solution chemistry of Fragipans-thermodynamic approach to understanding Fragipan formation. In: Fragipans: their OccurrenceClassification, and Genesis. SSSA Spec. Pub. 24: 113–139.

  • E.F. Kelly O.A. Chadwick T.E. Hilinski (1998) ArticleTitleThe effects of plants on mineral weathering Biogeochemistry 42 21–53 Occurrence Handle10.1023/A:1005919306687

    Article  Google Scholar 

  • K.J. Kendrick R.C. Graham (2004) ArticleTitlePedogenic silica accumulation in chronosequence soils, southern California Soil Sci. Soc. Am. J. 68 1295–1303 Occurrence Handle10.2136/sssaj2004.1295

    Article  Google Scholar 

  • R.A. Khalid J.A. Silva R.L. Fox (1978) ArticleTitleResidual effects of calcium silicate in tropical soils: II. Biological extraction of residual soil silicon Soil Sci. Soc. Am. J. 42 94–97 Occurrence Handle10.2136/sssaj1978.03615995004200010021x

    Article  Google Scholar 

  • Knight C.T.G. and Kinrade S.D. 2001. A primer on the aqueous chemistry of silicon. In: Datnoff L.E., Snyder G.H. and Korndörfer G.H. (eds.), Silicon in Agriculture. Elsevier Science B.V., pp. 57–84.

  • H. Kodama G.J. Ross (1991) ArticleTitleTiron dissolution method used to remove and characterize inorganic components in soils Soil Sci. Soc. Am. J. 55 1180–1187 Occurrence Handle10.2136/sssaj1991.03615995005500040047x

    Article  Google Scholar 

  • E. Koning E. Epping W. Raaphorst ParticleVan (2002) ArticleTitleDetermining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions Aquat. Geochem. 8 37–67 Occurrence Handle10.1023/A:1020318610178

    Article  Google Scholar 

  • G.H. Korndörfer M.N. Coelho G.H. Snyder C.T. Mizutani (1999) ArticleTitleAvaliação de métodos de extração de silício para solos cultivados com arroz de sequeiro Rev. Bras. Ci. Solo. Viçosa/MG 23 IssueIDI 101–106

    Google Scholar 

  • G.H. Korndörfer I. Lepsch (2001) Effect of silicon on plant growth and crop yield L.E. Datnoff G.H. Snyder G.H. Korndörfer (Eds) Silicon in Agriculture Elsevier Science B.V. Amsterdam 133–147

    Google Scholar 

  • G.L. Krausse C.L. Schelske C.O. Davis (1983) ArticleTitleComparison of three wet-alkaline methods of digestion of biogenic silica in water Freshwater Biol. 13 73–81 Occurrence Handle10.1111/j.1365-2427.1983.tb00658.x

    Article  Google Scholar 

  • J.F. Ma (2003) Functions of Silicon in Higher Plants W.E.G. Müller (Eds) Silicon Biomineralization Springer Berlin 127–160

    Google Scholar 

  • J.F. Ma Y. Miyake E. Takahashi (2001) Silicon as a beneficial element for crop plants L.E. Datnoff G.H. Snyder G.H. Korndörfer (Eds) Silicon in Agriculture Elsevier Science B.V. Amsterdam 17–39

    Google Scholar 

  • Matichencov V.V. and Bocharnikova E.A. 2001. The relationship between silicon and soil physical and chemical properties. In: Datnoff L.E., Snyder G.H. and Korndörfer G.H. (eds), Silicon in Agriculture. Elsevier Science B.V., pp. 209–219.

  • J.A. McKeague M.G. Cline (1963a) ArticleTitleSilica in soil solutions. II. The adsorption of monosilicic acid by soil and by other substances Can. J. Soil Sci. 43 83–96 Occurrence Handle10.4141/cjss63-011

    Article  Google Scholar 

  • J.A. McKeague M.G. Cline (1963b) ArticleTitleSilica in soil solutions. I. The form and concentration of dissolved silica in aqueous extracts of some soils Can. J. Soil Sci. 43 70–82

    Google Scholar 

  • E. McKeyes A. Sethi R.N. Young (1974) ArticleTitleAmorphous coatings on particles of sensitive clay soils Clays Clay Miner. 22 427–433

    Google Scholar 

  • O.P. Mehra M.L. Jackson (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate A. Swineford (Eds) Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958 Pergamon Press New York 317–327

    Google Scholar 

  • R.A. Mortlock P.N. Froelich ((1989)) ArticleTitleA simple method for the rapid determination of biogenic opal in pelagic marine sediments Deep-Sea Res. 36 IssueID9 1415–1426 Occurrence Handle10.1016/0198-0149(89)90092-7

    Article  Google Scholar 

  • P.J. Müller R. Schneider (1993) ArticleTitleAn automated leaching method for the determination of opal in sediments and particulate matter Deep-Sea Res. I 40 IssueID3 425–444 Occurrence Handle10.1016/0967-0637(93)90140-X

    Article  Google Scholar 

  • W.E.G. Müller (Eds) (2003) Silicon Biomineralization. Progress in Molecular and Subcellular Biology 33 Springer Berlin, Heidelberg 340

    Google Scholar 

  • K. Nonaka K. Takahashi (1988) ArticleTitleA method of measuring available silicates in paddy soils Jpn. Agric. Res. Q. 22 91–95

    Google Scholar 

  • K. Nonaka K. Takahashi (1990) ArticleTitleA method of assessing the need of silicate fertilizers in paddy soils XIV Int. Congr. Soil Sci., KyotoJpn. 4 513–514

    Google Scholar 

  • E. Paasche (1973) ArticleTitleSilicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) growth in a chemostat with silicate as limiting nutrient Marine Biol. 19 117–126 Occurrence Handle10.1007/BF00353582

    Article  Google Scholar 

  • E. Paasche (1980) ArticleTitleSilicon content of five marine plankton diatom species measured with a rapid filter method Limnol. Oceanogr. 25 474–480

    Google Scholar 

  • D.R. Piperno (1988) Phytolith Analysis: An Archaeological and Geological Perspective Academic Press London 280

    Google Scholar 

  • O. Ragueneau P. Tréguer (1994) ArticleTitleDetermination of the biogenic silica in coastal waters: applicability and limits of the alkaline digestion method Marine Chem. 45 43–51 Occurrence Handle10.1016/0304-4203(94)90090-6

    Article  Google Scholar 

  • Sauer D. and Burghardt W. 2000. Chemical processes in soils on artificial materials: silicate dissolution, occurrence of amorphous silica and zeolites. Proc. First Int. Conference on Soils of Urban, Industrial, Traffic and Mining Areas, Essen, July 12–18, 2000, vol. I, pp. 339–346.

  • Sauer D. and Burghardt W. 2006. The Occurrence and Distribution of Various Forms of Silica and Zeolites in Soils Developed from Wastes of Iron Production. Accepted for publishing in Catena.

  • M. Simmonsson D. Berggren J.P. Gustafson (1999) ArticleTitleSolubility of aluminium and silica in spodic horizons as affected by drying and freezing Soil Sci. Soc. Am. J. 63 1116–1123 Occurrence Handle10.2136/sssaj1999.6351116x

    Article  Google Scholar 

  • P. Schachtschabel C.G. Heinemann (1967) ArticleTitleWasserlösliche Kieselsäure in Lößböden Z. Pflanzenern. Bodenk. 118 22–35

    Google Scholar 

  • U. Schwertmann (1964) ArticleTitleDifferenzierung der eisenoxide des bodens durch extraktion mit ammoniumoxalat lösung Z. Pflanzenern. Bodenk. 105 194–202

    Google Scholar 

  • Snyder G.H. 1991. Development of a silicon soil test for Histosol-grown rice. EREC Res. Rpt., EV-1991–2, Univ. of Florida, Belle Glade, FL.

  • Snyder G.H. 2001. Methods for silicon analysis in plants, soils, and fertilizer. In: Datnoff L.E., Snyder G.H., Korndörfer and G.H. (eds), Silicon in Agriculture. Elsevier Science B.V., pp. 185–207.

  • S. Strekopytov C. Exley (2005) ArticleTitleThe formation, precipitation and structural characterisation of hydroxyaluminosilicates formed in the presence of fluoride and phosphate Polyhedron 24 1585–1592 Occurrence Handle10.1016/j.poly.2005.04.017

    Article  Google Scholar 

  • Sommer M., Kaczorek D., Kuzyakov Y. and Breuer J. 2006. Si pools and fluxes in soils - a review. Accepted for publishing in J. Plant Nutr. Soil Sci.

  • O. Tamm (1932) ArticleTitleUm bestämning ow de organiska komponenterna i markens gelkomplex Meddelanden Fran Statens Skogsförsöksanstalt 19 385–404

    Google Scholar 

  • P. Tréguer D.M. Nelson A.J. Bennekorn Particlevan D.J. DeMaster A. Leynaert B. Quéguiner (1995) ArticleTitleThe silica balance in the world ocean: a reestimate Science 268 375–379

    Google Scholar 

  • P. Tréguer P. Pondaven (2000) ArticleTitleSilica control of carbon dioxide Nature 406 358–359 Occurrence Handle10.1038/35019236

    Article  Google Scholar 

  • M. Veerhoff G.W. Brümmer (1993) ArticleTitleBildung schlechtkristalliner bis amorpher Verwitterungsprodukte in stark bis extreme versauerten Waldböden Z. Pflanzenernähr. Bodenk. 156 11–17

    Google Scholar 

  • S.D. Verma R.H. Rust (1969) ArticleTitleObservations on opal phytoliths in a soil biosequence in southeastern Minnesota Soil Sci. Soc. Am. Proc. 33 749–751 Occurrence Handle10.2136/sssaj1969.03615995003300050035x

    Article  Google Scholar 

  • K. Wada D.J. Greenland (1970) ArticleTitleSelective dissolution and differential infrared spectroscopy for characterization of ‘amorphous’ constituents in soil clays Clay Minerals 8 241–254

    Google Scholar 

  • K.H. Wedepohl (1995) ArticleTitleThe composition of the continental crust Geochim. Cosmochim. Acta 59 1217–1232 Occurrence Handle10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • Y. Wong You Cheong P. Halais (1970) ArticleTitleNeeds of sugar cane for silicon when growing in highly weathered latosols Exp. Agric. 6 99–106 Occurrence Handle10.1017/S0014479700000144

    Article  Google Scholar 

  • R.D. Yeck F. Gray (1972) ArticleTitlePhytolith size characteristics between Udolls and Ustolls Soil Sci. Soc. Am. Proc. 36 639–641 Occurrence Handle10.2136/sssaj1972.03615995003600040038x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, D., Saccone, L., Conley, D.J. et al. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80, 89–108 (2006). https://doi.org/10.1007/s10533-005-5879-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-5879-3

Keywords

Navigation