Skip to main content
Log in

Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus Dehalogenimonas

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Representatives from the genus Dehalogenimonas have the metabolic capacity to anaerobically transform a variety of environmentally important polychlorinated aliphatic compounds. In light of the recent isolation of additional strains, description of a new species, and an expanded number of uncultured DNA sequences, PCR primers and protocols intended to uniquely target members of this organohalide-respiring genus were reevaluated. Nine of fourteen primer combinations reported previously as genus-specific failed to amplify 16S rRNA genes of recently isolated Dehalogenimonas strains. Use of alternative combinations or modified genus-specific primers, however, allowed detection of all presently known Dehalogenimonas strains. Use of a modified primer set in qPCR revealed an approximately two-order of magnitude increase in concentration of Dehalogenimonas 16S rRNA gene copies following subsurface injection of electron donors at a Louisiana Superfund site, demonstrating the utility of the newly developed protocol and suggesting that the genus Dehalogenimonas can respond to biostimulation remediation strategies in a manner similar to that previously reported for other dechlorinating genera such as Dehalococcoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM (2013) Dehalogenimonas alkenigignens sp. nov, a chlorinated alkane dehalogenating bacterium isolated from groundwater. Int J Syst Evol Microbiol 63:1492–1498. doi:10.1099/ijs.0.045054-0

    Article  CAS  PubMed  Google Scholar 

  • Christ JA, Ramsburg CA, Abriola LM, Pennell KD, Löffler FE (2005) Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. Environ Health Perspect 113:465–477. doi:10.1289/ehp.6932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi:10.1099/ijs.0.64915-0

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:141–145. doi:10.1093/nar/gkn879

    Article  Google Scholar 

  • Cupples AM (2008) Real-time PCR quantification of Dehalococcoides populations: methods and applications. J Microbiol Methods 72:1–11. doi:10.1016/j.mimet.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL (2003) Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959. doi:10.1128/AEM.69.2.953-959.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Wildeman S, Verstraete W (2003) The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted. Appl Microbiol Biotechnol 61:94–102. doi:10.1007/s00253-002-1174-6

    Article  PubMed  Google Scholar 

  • Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545. doi:10.1128/AEM.70.9.5538-5545.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fennell DE, Carroll AB, Gossett JM, Zinder SH (2001) Assessment of indigenous reductive dechlorination potential at a TCE-contaminated site using microcosms, polymerase chain reaction analyses and site data. Environ Sci Technol 35:1830–1839. doi:10.1021/es0016203

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98

    CAS  Google Scholar 

  • He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)—and 1,2-dichloroethene-respring anaerobe. Environ Microbiol 7:1442–1450. doi:10.1111/j.1462-2920.2005.00830.x

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE, Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl Environ Microbiol 68:485–495. doi:10.1128/AEM.68.2.485-495.2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lee PKH, Macbeth TW, Sorenson KS, Deeb RA, Alvarez-Cohen L (2008) Quantifying genes and transcripts to assess the in situ physiology of “Dehalococcoides” spp. in a trichloroethene-contaminated groundwater site. Appl Environ Microbiol 74:2728–2739. doi:10.1128/AEM.02199-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Löffler FE, Sun Q, Li J, Tiedje JM (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374. doi:10.1128/AEM.66.4.1369-1374.2000

    Article  PubMed Central  PubMed  Google Scholar 

  • Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63:625–635. doi:10.1099/ijs.0.034926-0

    Article  PubMed  Google Scholar 

  • Major DW, McMaster ML, Cox EE, Edwards EA, Dworatzek SM, Hendrickson ER, Starr MG, Payne JA, Buonamici LW (2002) Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ Sci Technol 36:5106–5116. doi:10.1021/es0255711

    Article  CAS  PubMed  Google Scholar 

  • Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA (2012) Discovery of a trans-dichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 78:5280–5287. doi:10.1128/AEM.00384-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maymó-Gatell X, Chien Y, Gossett JM, Zinder SH (1997) Isolation of a bacterium reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571. doi:10.1126/science.276.5318.1568

    Article  PubMed  Google Scholar 

  • Moe WM, Yan J, Nobre MF, da Costa MS, Rainey FA (2009) Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductive dehalogenating bacterium isolated from chlorinated solvent contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697. doi:10.1099/ijs.0.011502-0

    Article  CAS  PubMed  Google Scholar 

  • Myers EW, Miller W (1988) Optimal alignments in linear space. Comput Appl Biosci 4:11–17

    CAS  PubMed  Google Scholar 

  • Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K, Hettich RL, Ritalahti KM, Löffler FE (2014) Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination 1,2-dichloropropane to propene in organohalide-respiring Chloroflexi. Appl Environ Microbiol 80:808–818. doi:10.1128/AEM.02927-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092. doi:10.1099/00207713-46-4-1088

    Article  CAS  PubMed  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774. doi:10.1128/AEM.72.4.2765-27774.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scheutz C, Durant ND, Dennis P, Hansen MH, Jørgensen T, Jakobsen R, Cox EE, Bjerg PL (2008) Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ Sci Technol 42:9302–9309. doi:10.1021/es800764t

    Article  CAS  PubMed  Google Scholar 

  • van der Zaan B, Hannes F, Hoekstra N, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2010) Correlation of Dehalococcoides 16S rRNA and chloroethene-reductive dehalogenase genes with geochemical conditions in chloroethene-contaminated groundwater. Appl Environ Microbiol 76:843–850. doi:10.1128/AEM.01482-09

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang S, He J (2013) Phylogenetically distinct bacteria involve extensive dechlorination of Aroclor 1260 in sediment-free cultures. PLoS One 8:e59178. doi:10.1371/journal.pone.0059178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan J, Rash BA, Rainey FA, Moe WM (2009a) Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ Microbiol 11:833–843. doi:10.1111/j.1462-2920.2008.01804.x

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Rash BA, Rainey FA, Moe WM (2009b) Detection and quantification of Dehalogenimonas and “Dehalococcoides” populations via PCR-based protocols targeting 16S rRNA genes. Appl Environ Microbiol 75:7560–7564. doi:10.1128/AEM.01938-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Governor’s Biotechnology Initiative of the Louisiana Board of Regents grant BOR#015 and a consortium of petrochemical companies. The authors gratefully acknowledge Jyoti Rao and Rachel Stebbing for assistance with groundwater community DNA extractions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Moe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Bowman, K.S., Rainey, F.A. et al. Reassessment of PCR primers targeting 16S rRNA genes of the organohalide-respiring genus Dehalogenimonas . Biodegradation 25, 747–756 (2014). https://doi.org/10.1007/s10532-014-9696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9696-z

Keywords

Navigation