Skip to main content
Log in

Reservoir of the European chestnut diversity in Switzerland

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In Switzerland, chestnut forests cover about 27,100 ha, plus some 6800 ha of mixed stands. Due to environmental and historical reasons, most of these still existing forests are located in the Swiss Southern Alps, whereas in the northern parts of the country the chestnut cultivation and the related knowledge strongly regressed since the Little Ice Age period. Nevertheless, Switzerland still hosts valuable genetic resources of the sweet chestnut tree. The present genetic study bases on a nationwide inventory, identification and precise localisation of old and/or grafted chestnut trees for conservation purposes. The main objectives were: (1) to evaluate the genetic diversity and the genetic structure of Castanea sativa in Switzerland, and (2) to define a program of conservation including the proposal of a defined core collection. We genetically analysed a pre-selection of 962 accessions (out of 14,165 inventoried trees throughout Switzerland), profiling them with 24 microsatellites. We identified 675 different genotypes out of 962 accessions with a 29.8% of repetitiveness due to clonality. A structural analysis based on a Bayesian method allowed to identify two main clusters, one mostly related to the genetic group from southern Europe (Reconstructed Panmictic Population RPP1) and a second one (RPP2) which revealed to be independent and genetically different from other European groups of chestnut cultivars. The Swiss RPP2 represents a new genetic group, and consequently a complement to genetic resources of chestnut tree in Europe. Genetic analysis allowed defining a core collection of 46 genotypes, which should be used in priority for the Swiss conservation program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Accessibility Statement

A comprehensive DNA samples database is stored at the Institute Land Nature Environment (HES-SO University of applied sciences and arts western Switzerland).

References

  • Besnard G, Baradat P, Berville A (2001) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258. https://doi.org/10.1007/s001220051642

    Article  CAS  Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405. https://doi.org/10.1126/science.1090372

    Article  CAS  PubMed  Google Scholar 

  • Brändli UB (1998) Die häufigsten Waldbäume der Schweiz. Ergebnisse aus dem Landesforstinventar 1983–85: Verbreitung, Standort und Häufigkeit von 30 Baumarten, 2nd edn. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf

    Google Scholar 

  • Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241. https://doi.org/10.1046/j.1471-8286.2003.00410.x

    Article  CAS  Google Scholar 

  • Buonincontri MP, Saracino A, Di Pasquale G (2015) The transition of chestnut (Castanea sativa Miller) from timber to fruit tree: Cultural and economic inferences in the Italian peninsula. Holocene 25(7):1111–1123. https://doi.org/10.1177/0959683615580198

    Article  Google Scholar 

  • Claros MG, Crespillo R, Aguilar ML, Canovas FM (2000) DNA fingerprinting and classification of geographically related genotypes of olive-tree (Olea europaea L.). Euphytica 116:131–142. https://doi.org/10.1023/A:1004011829274

    Article  CAS  Google Scholar 

  • Closuit R (1958) Le châtaingnier dans la vallée suisse du Rhône. Mitt Eidgenöss Anst Forstliche Vers 34(3):183–220

    Google Scholar 

  • Conedera M, Barthold F, Torriani D, Pezzatti GB (2010) Drought sensitivity of Castanea sativa: case study of summer 2003 in the southern Alps. Acta Hortic 866:297–302

    Article  Google Scholar 

  • Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe from its origin to its diffusion on a continental scale. Veg Hist Archaeobot 13:161–179. https://doi.org/10.1007/s00334-004-0038-7

    Article  Google Scholar 

  • Conedera M, Müller-Starck G, Fineschi S (1994) Genetic characterization of cultivated varieties of European Chestnut (Castanea sativa Mill.) in Southern Switzerland I Inventory of chestnut varieties: history and perspectives. In: Proceedings of the International Congress on Chestnut Spoleto Italy 20–23 October 1993, pp 299–302.

  • Conedera M, Stanga P, Lischer C, Stöckli V (2000) Competition and dynamics in abandoned chestnut orchards in southern Switzerland. Ecol Mediterr 26(1/2):101–112

    Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Engler A (1901) Über Verbreitung Standortansprüche und Geschichte der Castanea vesca Gärtner mit besonderer Berücksichtigung der Schweiz. Ber Schweiz Bot Ges 9:23–62

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Forster B, Castellazzi T, Colombi L, Fürst E, Marazzi C, Meier F et al (2009) Die Edelkastaniengallwespe Dryocosmus kuriphilus (Yasumatsu) (Hymenoptera Cynipidae) tritt erstmals in der Südschweiz auf. Mitt Schweiz Entomol Ges 82:271–279. https://doi.org/10.5169/seals-402995

    Article  Google Scholar 

  • Furrer E (1958) Die Edelkastanie in der Innerschweiz. Mitt Eidgenöss Anstalt Forstl Vers 34(3):90–182

    Google Scholar 

  • Furrer E (1972) Die früheste Kastanienkultur in der Innerschweiz und die heutigen Reste. Ber Schweiz Bot Ges 82(1):5–13

    Google Scholar 

  • Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50(12):1089–1103. https://doi.org/10.1139/G07-086

    Article  CAS  PubMed  Google Scholar 

  • Heiniger U, Conedera M (1994) Chestnut forests and chestnut cultivation in Switzerland. In: Proceedings of the international chestnut conference West Virginia University College of Agriculture and Forestry Morgantown West Virginia July 10–14 1992, pp 175–178

  • Kampfer S, Lexer C, Glossl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186. https://doi.org/10.1111/j.1601-5223.1998.00183.x

    Article  CAS  Google Scholar 

  • Krebs P, Koutsias N, Conedera M (2012) Modelling the eco-cultural niche of giant chestnut trees: new insights into land use history in southern Switzerland through distribution analysis of a living heritage. J Hist Geogr 38(4):372–386. https://doi.org/10.1016/j.jhg.2012.01.018

    Article  Google Scholar 

  • Krebs P, Pezzatti GB, Beffa G, Tinner W, Conedera M (2019) Revising the sweet chestnut (Castanea sativa Mill.) refugia history of the last glacial period with extended pollen and macrofossil evidence. Quat Sci Rev 206:111–128. https://doi.org/10.1016/j.quascirev.2019.01.002

    Article  Google Scholar 

  • Krebs P, Tinner W, Conedera M (2014) Del castagno e della castanicoltura nelle contrade insubriche: tentativo di una sintesi eco-storica. Arch Stor Ticin 155:5–37

    Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG et al (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23(16):2155–2162. https://doi.org/10.1093/bioinformatics/btm313

    Article  CAS  PubMed  Google Scholar 

  • Lefort F, Douglas GC (1999) An efficient micro-method of DNA isolation from mature leaves of four hardwood tree species Acer Fraxinus Prunus and Quercus. Ann For Sci 56(3):259–263. https://doi.org/10.1051/forest:19990308

    Article  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill). Mol Breed 11:127–136. https://doi.org/10.1023/A:1022456013692

    Article  CAS  Google Scholar 

  • Mattioni C, Martín MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100:951–961. https://doi.org/10.3732/ajb.1200194

    Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasche S, Calmin G, Auderset G, Crovadore J, Pelleteret P, Mauch-Mani B et al (2016) Gnomoniopsis smithogilvyi prevalence in Castanea sativa shoots in Switzerland. Fungal Genet Biol 87:9–21. https://doi.org/10.1016/j.fgb.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pereira-Lorenzo S, Costa R, Ramos-Cabrer AM, Ribeiro C, Serra da Silva C, Manzano G, Barreneche T (2010) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 6:701–715. https://doi.org/10.1007/s11295-010-0285-y

    Article  Google Scholar 

  • Pereira-Lorenzo S, Lourenço Costa RM, Ramos-Cabrer AM, Ciordia-Ara M, Marques Ribeiro CA, Borges O, Barreneche T (2011) Chestnut cultivar diversification process in the Iberian Peninsula Canary Islands and Azores. Genome 54:301–315. https://doi.org/10.1139/g10-122

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Lorenzo S, Ramos Cabrer AM, Barreneche T, Mattioni C, Villani F, Díaz-Hernández MB et al (2017) Database of European chestnut cultivars and definition of a core collection using simple sequence repeats. Tree Genet Genomes 13:114. https://doi.org/10.1007/s11295-017-1197-x

    Article  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Barreneche T, Mattioni C, Villani F, Díaz-Hernández MB et al (2019) Instant domestication process of European chestnut cultivars. Ann Appl Biol 174(1):74–85. https://doi.org/10.1111/aab.12474

    Article  Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants science. Enfield, Science Publishers, Montpellier, pp 43–76

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Retrieved from https://darwin.cirad.fr/

  • Pitte JR (1986) Terre de castanides Hommes et paysages du châtaigniers de l’antiquité à nos jours. Fayard, Paris

    Google Scholar 

  • Porras-Hurtado L, Ruiz Y, Santos C, Phillips C, Carracedo Á, Lareu MV (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Front Genet 4:98. https://doi.org/10.3389/fgene.2013.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudow A, Bischofberger Y, Piattini P, Hatt S (2012) Handbook of sweet chestnut descriptors (Castanea sativa Mill.). Federal Office for Agriculture, Bern

    Google Scholar 

  • Rudow A, Conedera M (2001) Blüte und Sortenerkennung bei der Edelkastanie (Castanea sativa Mill.) auf der Alpensüdseite der Schweiz. Bot Helv 111:1–23

    Google Scholar 

  • Squatriti P (2013) Landscape and change in early medieval Italy: chestnuts economy and culture. University Press Cambridge, Cambridge

    Book  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A et al (1997) Identification and characterization of (GA/CT)(n)-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096. https://doi.org/10.1023/A:1005736722794

    Article  CAS  PubMed  Google Scholar 

  • Tanner H (1927) Die Verbreitung und wirtschaftliche Bedeutung der zahmen Kastanie im Kanton St Gallen. Jahrbuch St Gallischen Naturwissenschaftlichen Gesellschaft 63:27–48

    Google Scholar 

  • van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources IPGRI. (Technical Bulletin No 3). International Plant Genetic Resources Institute, Rome, Italy

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. https://doi.org/10.2307/2408641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Swiss Federal Office for Agriculture FOAG in the framework of the Swiss National Plan of Action for plant genetic resources for food and agriculture. We thank to the Spanish government for the funds under the contract AGL2013-48017-C2-2-R to compare allele ranges with Spanish samples.

Author information

Authors and Affiliations

Authors

Contributions

Designed research: SP-L, YB, TB, FL. Performed research: SP-L, YB, MC, PP, JC, RC, AR, SH, AMR-C, TB, FL. Contributed new reagents or analytical tools: SP-L, MC, AMR-C, HC, TB, FL. Analyzed data: SP-L, MC, RC, AMR-C, TB, FL. Wrote the paper: SP-L, YB, MC, PP, AR, SH, AMR-C, TB, FL.

Corresponding author

Correspondence to S. Pereira-Lorenzo.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Lorenzo, S., Bischofberger, Y., Conedera, M. et al. Reservoir of the European chestnut diversity in Switzerland. Biodivers Conserv 29, 2217–2234 (2020). https://doi.org/10.1007/s10531-020-01970-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-01970-2

Keywords

Navigation