Skip to main content

Advertisement

Log in

Predicting the distribution of Encephalartos latifrons, a critically endangered cycad in South Africa

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

This study evaluates how a modelling approach to determine areas of suitable habitat for the Critically Endangered Albany cycad Encephalartos latifrons can assist in systematic conservation planning for this and other rare and threatened cycads. A map distinguishing suitable from unsuitable habitat for E. latifrons was produced and important environmental predictors (climate, geology, topography and vegetation) influencing the suitable habitat were estimated. The maximum entropy (MaxEnt) modelling technique was chosen for this study as it has consistently performed well compared with alternative modelling methods and is also an appropriate model choice when the sample size is small and locality records are relatively few. Predicted habitat suitability showed that some locations chosen for translocation and restoration of E. latifrons specimens are not suitable. This revealed that modelling suitable habitat can guide relocation and regeneration of E. latifrons and perhaps other threatened cycads with restricted distributions and few locality records. The species distribution model constructed for E. latifrons is the first reported habitat model for a Critically Endangered cycad in South Africa. The results may be incorporated into conservation planning and structured decision-making about translocations and restoration programmes involving vulnerable cycads, which are among the most threatened organisms globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altwegg R, West A, Gillson L, Midgley GF (2014) Impacts of climate change in the Greater Cape Floristic Region. In: Allsop N, Colville JF, Verboom GA (eds) Fynbos: ecology, evolution and conservation of a megadiverse region. Oxford University Press, Oxford, pp 299–320

    Chapter  Google Scholar 

  • Basson M (1991) Eerste verslag wat die bron en status van die Encephalartos spesies in die Trappe’s Valley area in die Oos-Kaap aandui met spesiale verwysing na die Encephalartos latifrons. Cape Nature Conservation Survey Report, South Africa

  • Bergh NG, Verboom GA, Rouget M, Cowling RM (2014) Vegetation types of the Greater Cape Floristic Region. In: Allsop N (ed) Fynbos: Ecology, evolution and conservation of a megadiverse region. Oxford University Press, Oxford, pp 1–25

    Google Scholar 

  • Berliner D, Desmet P (2007) Eastern Cape Biodiversity Conservation Plan. Technical Report, Pretoria, South Africa

  • Berliner D, Desmet P, Hayes R (2007) Eastern cape biodiversity conservation plan handbook. Department of Water Affairs and Forestry Project No 2005-012, King Williams Town

  • Booth PWK (2002) Thrust faults and fold vergence in the Palaeozoic Middle and Upper Witteberg Group, Cape Supergroup (Cape Fold Belt), Steytlerville: an interpretation of their relationship. S Afr J Geol 105:25–38

    Article  Google Scholar 

  • Bradley BA, Olsson AD, Wang O, Dickson BG, Pelech L, Sesnie SE, Zachmann LJ (2012) Species detection vs. habitat suitability: are we biasing habitat suitability models with remotely sensed data? Ecol Modell 244:57–64

    Article  Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700

    Article  Google Scholar 

  • Campbell BM (1986) Montane plant communities of Fynbos Biome. Vegetatio 66:3–16

    Article  Google Scholar 

  • Castillo-Lara P, Octavio-Aguilar P, Arturo De-Nova J (2017) Ceratozamia zaragozae Medellín-Leal (Zamiaceae), an endangered Mexican cycad: New information on population structure and spatial distribution. Brittonia, pp 1–11

  • Chunco AJ, Phimmachak S, Sivongxay N, Stuart BL (2013) Predicting environmental suitability for a rare and threatened species (Lao Newt, Laotriton laoensis) using validated species distribution models. PLoS ONE 8:1–13

    Article  CAS  Google Scholar 

  • Cloete EC, Lubke RA (1999) Flora of the Kap River Reserve, Eastern Cape, South Africa. Bothalia 29:139–149

    Article  Google Scholar 

  • Convention on Biological Diversity (2011) Conference of the parties decision X/2: strategic plan for biodiversity 2011–2020. https://www.cbd.int/decision/cop/?id=12268. Accessed 27 Oct 2017

  • Cowling RM (1983) Phytochorology and vegetation history in the south-eastern Cape, South Africa. J Biogeogr 10:393–419

    Article  Google Scholar 

  • Cowling RM, Pressey RL, Rouget M, Lombard AT (2003) A conservation plan for a global biodiversity hotspot—the Cape Floristic Region, South Africa. Biol Conserv 112:191–216

    Article  Google Scholar 

  • Daly B, Donaldson JS, Friedmann Y, Hahndiek Q, King N, Newton D, Southwood A (eds) (2006) Population and habitat viability assessment for the Albany cycad (Encephalartos latifrons). Conservation Breeding Specialist Group (SSC/IUCN)/CBSG Southern Africa. Endangered Wildlife Trust, Johannesburg

    Google Scholar 

  • DEA (2011) Biodiversity Management Plan for Albany cycad, Encephalartos latifrons. National Environmental Management: Biodiversity Act (10/2004): South African Government Gazette No. 34388

  • DEA (2014) National Strategy and Action Plan for the Management of Cycads. DEA, Pretoria

    Google Scholar 

  • DEA (2015) Biodiversity Management Plan for 11 critically endangered and 4 endangered Encephalartos species. Government of South Africa, South Africa

    Google Scholar 

  • Donaldson JS (ed) (1995) Cycad conservation in South Africa: issues, priorities and actions. Cycad Society of South Africa, South Africa, pp 1–27

    Google Scholar 

  • Donaldson JS (ed) (2003) Cycads. Status survey and conservation action plan. IUCN/SSC Cycad Specialist Group. IUCN, Gland

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberόn J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • ESRI (2012) ArcGIS. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fois M, Fenu G, Lombraña AC, Cogonia D, Bacchetta G (2015) A practical method to speed up the discovery of unknown populations using species distribution models. J Nat Conserv 24:42–48

    Article  Google Scholar 

  • Fordham DA, Resit Akçakaya H, Araújo MB, Elith J, Keith DA, Pearson R, Auld TD, Mellin C, Morgan JW, Regan TJ, Tozer M, Watts MJ, White M, Wintle BA, Yates C, Brook BW (2012) Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob Change Biol 18:1357–1371

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rodder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:1–14

    Article  CAS  Google Scholar 

  • Fragniere Y, Bétrisey S, Cardinaux L, Stoffel M, Kozlowski G (2015) Fighting their last stand? A global analysis of the distribution and conservation status of gymnosperms. J Biogeogr 42(5):809–820

    Article  Google Scholar 

  • Gogol-Prokurat M (2011) Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol Appl 21:33–47

    Article  PubMed  Google Scholar 

  • Graham CH, Elith J, Hijmans RJ, Guisan A, Townsend Peterson A, Loiselle BA, Nceas T (2008) The influence of spatial errors in species data used in distribution models. J Appl Ecol 45:239–247

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan T, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo D, Desmet PG, Powrie LW (2017) Impact of the future changing climate on the southern Africa biomes, and the importance of geology. J Geosci Environ Prot 5:1–9

    Google Scholar 

  • Gutiérrez-Ortega JS, Yamamoto T, Vovides AP, Pérez-Farrera MA, Martínez JF, Molina-Freaner F, Yasuyuki Watano Y, Kajita T (2017) Aridification as a driver of biodiversity: a case study for the cycad genus Dioon (Zamiaceae). Ann Bot 00:1–15

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoare D, Mucina L, Rutherford MC, Vlok JH, Euston-Brown D, Palmer AR, Powrie LW, Lechmere-Oertel RG, Proches SM, Dold AP, Ward RA (2006) Albany Thicket Biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland, 1st edn. South African National Biodiversity Institute (Strelitzia 19), Pretoria, pp 541–567

    Google Scholar 

  • Hoffmann M, Hilton-taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, Carpenter KE, Chanson J, Collen B, Cox NA, Darwall WRT, Dulvy NK, Harrison LR, Katariya V, Pollock CM, Quader S, Richman NI, Rodrigues ASL, Tognelli MF, Vie J-C, Aguiar JM, Allen DJ, Allen GR, Amori G (2010) The impact of conservation on the status of the world’s vertebrates. Sci New Ser 330:1503–1509

    CAS  Google Scholar 

  • Iglesias-Andreu LG, Octavio-Aguilar P, Vovides A, Meerow A, Núñez de Cáceres-González FF, Galván-Hernández DM (2017) Extinction risk of Zamia inermis (Zamiaceae): a genetic approach for the conservation of its single natural population. Int J Plant Sci 178:715–723

    Article  Google Scholar 

  • IUCN (2010) IUCN Red List of Threatened Species. In: IUCN Global Species Program. Red List Unit. http://www.iucnredlist.org. Accessed 24 Oct 2017

  • Jackson CR, Robertson MP (2011) Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records. J Nat Conserv 19:87–94

    Article  Google Scholar 

  • Kauth RJ, Thomas GS (1976) The tasselled cap: a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. LARS Symposia Paper 159

  • Kleynhans CJ, Thirion C, Moolman J (2005) A level 1 river ecoregional classification system for South Africa. Lesotho and Swaziland, Pretoria, South Africa

    Google Scholar 

  • Kraaij T, Van Wilgen BW, Van Wilgen BW (2014) Drivers, ecology, and management of fire in fynbos. In: Allsop N, Colville JF, Verboom GA (eds) Fynbos: ecology, evolution, and conservation of a megadiverse region. Oxford University Press, Oxford, pp 47–72

    Chapter  Google Scholar 

  • Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98

    Google Scholar 

  • Laguna E, Deltoro VI, Pèrez-Botella J, Perez-Rovira P, Serra LI, Olivares A, Fabregat C (2004) The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biol Conserv 119:421–426

    Article  Google Scholar 

  • Lahoz-Monfort JJ, Guillera-Arroita G, Milner-Gulland EJ, Young RP, Nicholson E (2010) Satellite imagery as a single source of predictor variables for habitat suitability modelling: how Landsat can inform the conservation of a critically endangered lemur. J Appl Ecol 47:1094–1102

    Article  Google Scholar 

  • Lubke RA, Everard DA, Jackson S (1986) The biomes of the Eastern Cape with emphasis on their conservation. Bothalia 16:251–261

    Article  Google Scholar 

  • Marcer A, Saez L, Molowny-Horas R, Pons X, Pino J (2013) Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol Conserv 166:221–230

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:242

    Article  Google Scholar 

  • Marler TE, Lindström AJ (2017) First, do no harm. Comm Integr Biol 10(5–6):e1393593

    Article  Google Scholar 

  • Maunder M (1992) Plant reintroduction: an overview. Biodivers Conserv 1:51–61

    Google Scholar 

  • Meadows ME, Dewey FE (1986) The relationship between soils and vegetation, Beggar’s Bush Forest Reserve, Grahamstown. S Afr Geogr J 68:144–153

    Article  Google Scholar 

  • Meek MH, Wells C, Tomalty KM, Ashander J, Cole EM, Gille DA, Putmand BJ, Rose JP, Savoca MS, Yamane L, Hull JM, Rogers DL, Rosenblum EB, Shogren JF, Swaisgood RR, May B (2015) Fear of failure in conservation: the problem and potential solutions to aid conservation of extremely small populations. Biol Conserv 184:209–217

    Article  Google Scholar 

  • Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S (2011) Recent synchronous radiation of a living fossil. Science 334:796–799

    Article  PubMed  CAS  Google Scholar 

  • Osborne R (1995a) An overview of cycad conservation in South Africa. In: Donaldson JS (ed) Cycad conservation in South Africa: issues, priorities and actions. Cycad Society of South Africa, Stellenbosch, pp 1–7

    Google Scholar 

  • Osborne R (1995b) Confiscated plants: where can they best be used in the interest of conservation? In: Donaldson JS (ed) Cycad conservation in South Africa: issues, priorities and actions. Cycad Society of South Africa, Stellenbosch, pp 26–27

    Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Phillips S (2010) A brief tutorial on Maxent. Lessons Conserv 3:107–135

    Google Scholar 

  • Preece LD, Duguid AW, Albrecht DE (2007) Environmental determinants of a restricted cycad in central Australia, Macrozamia macdonnellii. Aust J Bot 55:601–607

    Article  Google Scholar 

  • Ravele AM, Makhado RA (2010) Exploitation of Encephalartos transvenosus outside and inside Mphaphuli Cycads Nature Reserve, Limpopo Province, South Africa. Afr J Ecol 48:105–110

    Article  Google Scholar 

  • Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Townsend Peterson A (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841

    Article  PubMed  CAS  Google Scholar 

  • Razgour O, Hanmer J, Jones G (2011) Using multi-scale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biol Conserv 144:2922–2930

    Article  Google Scholar 

  • Rebelo AG, Boucher C, Helme N, Mucina L, Rutherford MC (2006) Fynbos biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria, pp 53–219

  • Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, Scambos TA, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymburner L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172

    Article  Google Scholar 

  • Salas-Leiva DE, Meerow AW, Calonje M, Griffith MP, Francisco-Ortega J, Nakamura K, Stevenson DW, Lewis CE, Namoff S (2013) Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods. Ann Bot 112(7):1263–1278

    Article  PubMed  PubMed Central  Google Scholar 

  • Shone RW, Booth PWK (2005) The Cape Basin, South Africa: a review. J Afr Earth Sci 43:196–210

    Article  Google Scholar 

  • Soberón J, Townsend Peterson A (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Informatics 2:1–10

    Article  Google Scholar 

  • South African Government (2010) National Protected Area Expansion Strategy for South Africa 2008: priorities for expanding the protected area network for ecological sustainability and climate-change adaptation. Government of South Africa, Pretoria

    Google Scholar 

  • Stickler MM, Shackleton CM (2014) Local wood demand, land cover change and the state of Albany thicket on an urban commonage in the Eastern Cape, South Africa. Environ Manage 55:411–422

    Article  PubMed  Google Scholar 

  • Swart C (2017) The globetrotting Albany cycad. Veld. Flora 103:79–80

    Google Scholar 

  • Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T (2004) Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 84:1688–1699

    Article  Google Scholar 

  • TRAFFIC (2003) Review of significant trade cycads. PC14 Doc. 9.2.2 Annex 1, pp 3–44

  • Treutlein J, Vorster P, Wink M (2005) Molecular relationships in Encephalartos (Zamiaceae, Cycadales) based on nucleotide sequences of nuclear ITS 1and2, Rbcl, and genomic ISSR fingerprinting. Plant Biol 7:79–90

    Article  PubMed  CAS  Google Scholar 

  • van Wyk Smith GF (2001) Regions of floristic endemism in southern Africa: a review with emphasis on succulents. Umdaus Press, South Africa

    Google Scholar 

  • Vice A (1995) Encephalartos altensteinii: a massive rape and recovery. Encephalartos 1:15–19

    Google Scholar 

  • Williams JN, Seo C, Thorne J, Nelson JK, Erwin S, O’Brien JM, Schwartz MW (2009) Using species distribution models to predict new occurrences for rare plants. Divers Distrib 15:565–576

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

  • Yeld J (2014) Thieves make off with cycads worth about R500 000. In: Cape Argus. https://www.pressreader.com/south-africa/cape-argus/20140807/282510066712732. Accessed 15 Sep 2017

  • Yessoufou K, Bamigboye SO, Daru BH, van der Bank M (2014) Evidence of constant diversification punctuated by a mass extinction in the African cycads. Ecol Evol 4:50–58

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Roger Rowswell for assistance in the field, as well as the landowners who kindly shared their local knowledge. Thanks to Quintus Hahndiek, Ricky Hannan, Gerrie Ferreira and Thembinkosi Tyali (Eastern Cape Department of Economic Development and Environmental Affairs) for supplying information on historical permitting. We also thank Susanne Vetter (Rhodes University) and Tony Palmer (Agricultural Research Council) for offering advice and support throughout the research. We would like to thank three anonymous reviewers who helped improve our manuscript. Special thanks to Rose Prevec (Albany Museum) for her insightful comments on early drafts of the manuscript. Cynthia Kulongowski is thanked for editing a final version of the manuscript. Financial support for this study was provided by the South African National Biodiversity Institute (SANBI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carin Swart.

Additional information

Communicated by David Hawksworth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swart, C., Donaldson, J. & Barker, N. Predicting the distribution of Encephalartos latifrons, a critically endangered cycad in South Africa. Biodivers Conserv 27, 1961–1980 (2018). https://doi.org/10.1007/s10531-018-1519-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1519-9

Keywords

Navigation