Skip to main content

Advertisement

Log in

Species and functional trait re-assembly of ground beetle communities in restored grasslands

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Ecosystem restoration provides unique opportunities to study community dynamics under succession and can reveal how consumer communities re-assemble and respond to successional changes. Studying community dynamics from both taxonomic and functional trait perspectives also may provide more robust assessments of restoration progress or success and allow cross-system comparisons. We studied ground beetle (Coleoptera: Carabidae) communities for three years in a restored grassland chronosequence with sites from 0 to 28 years old. We measured traditional community metrics (abundance, richness, Shannon diversity) and functional trait metrics based on species’ body length, wing morphology, activity time, phenology, and diet. Communities had high species richness and abundance in early successional stages, but these declined in later stages to low levels comparable to an adjacent grassland remnant. Species composition also shifted with time, converging with the remnant. Although functional richness, like species richness, declined as succession progressed, functional divergence quickly increased and was maintained over time, suggesting niche differentiation in established communities. Young sites were typified by small, macropterous, phytophagous species, while older sites contained larger species more likely to be flightless and carnivorous. Prescribed burns also affected traits, decreasing prevalence of larger species. This study demonstrates that functionally diverse consumer communities can self-assemble under restoration practices. In a relatively short amount of time both morphological and trophic level diversity are established. However, prescribed fire intended to control non-desirable plants may also shape beetle community functional composition, and restoration managers should consider if plant community benefits of fire outweigh potential declines in consumer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnett RH, Thomas MC, Skelley PE, Frank JH (2002) American beetles. Polyphaga: Scarabaeoidea through Curculionoidea, vol II, 1 edn. CRC Press, Boca Raton

  • Barber NA, Jones HP, Duvall MR et al (2016) Phylogenetic diversity is maintained despite richness losses over time in restored tallgrass prairie plant communities. J Appl Ecol. doi:10.1111/1365-2664.12639

    Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes

  • Bhowmik PC, Bekech MM (1993) Horseweed (Conyza canadensis) seed production, emergence, and distribution in no-tillage and conventional-tillage corn (Zea mays). Agron Trends Agric Sci 1:67–71

    Google Scholar 

  • Blubaugh CK, Hagler JR, Machtley SA, Kaplan I (2016) Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric Ecosyst Environ 231:264–270. doi:10.1016/j.agee.2016.06.045

    Article  Google Scholar 

  • Bohan DA, Boursault A, Brooks DR, Petit S (2011) National-scale regulation of the weed seedbank by carabid predators. J Appl Ecol 48:888–898. doi:10.1111/j.1365-2664.2011.02008.x

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Bousquet Y (2010) Illustrated identification guide to adults and larvae of northeastern North America ground beetles. Pensoft Pub, Sofia

    Google Scholar 

  • Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695

    Article  PubMed  PubMed Central  Google Scholar 

  • Camill P, McKone MJ, Sturges ST et al (2004) Community-and ecosystem-level changes in a species-rich tallgrass prairie restoration. Ecol Appl 14:1680–1694

    Article  Google Scholar 

  • Cárdenas AM, Buddle CM (2008) Introduced and native ground beetle assemblages (Coleoptera: Carabidae) along a successional gradient in an urban landscape. J Insect Conserv 13:151–163. doi:10.1007/s10841-008-9137-6

    Article  Google Scholar 

  • Carter DL, Blair JM (2012) Recovery of native plant community characteristics on a chronosequence of restored prairies seeded into pastures in West-Central Iowa. Restor Ecol 20:170–179

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Ciegler JC (2000) Ground beetles and wrinkled bark beetles of South Carolina: (Coleoptera: Geadephaga: Carabidae and Rhysodidae). Clemson University

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington

  • Dahms H, Lenoir L, Lindborg R et al (2010) Restoration of seminatural grasslands: what is the impact on ants? Restor Ecol 18:330–337

    Article  Google Scholar 

  • de Bello F, Lavorel S, Díaz S et al (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893. doi:10.1007/s10531-010-9850-9

    Article  Google Scholar 

  • Díaz S, Noy-Meir I, Cabido M (2001) Can grazing response of herbaceous plants be predicted from simple vegetative traits? J Appl Ecol 38:497–508

    Article  Google Scholar 

  • Díaz S, Fargione J, Chapin FS III, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:e277

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99:201–219

    Article  Google Scholar 

  • Fountain-Jones NM, Baker SC, Jordan GJ (2015) Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecol Entomol 40:1–13. doi:10.1111/een.12158

    Article  Google Scholar 

  • Gaines HR, Gratton C (2010) Seed predation increases with ground beetle diversity in a Wisconsin (USA) potato agroecosystem. Agric Ecosyst Environ 137:329–336

    Article  Google Scholar 

  • Gerisch M, Agostinelli V, Henle K, Dziock F (2012) More species, but all do the same: contrasting effects of flood disturbance on ground beetle functional and species diversity. Oikos 121:508–515

    Article  Google Scholar 

  • Gleason HA (1927) Further views on the succession-concept. Ecology 8:299–326

    Article  Google Scholar 

  • Grman E, Bassett T, Brudvig LA (2013) Confronting contingency in restoration: management and site history determine outcomes of assembling prairies, but site characteristics and landscape context have little effect. J Appl Ecol 50:1234–1243

    Google Scholar 

  • Hance T (1987) Predation impact of carabids at different population densities on Aphis fabae development in sugar beet. Pedobiologia 30:251–262

    Google Scholar 

  • Hansen MJ, Gibson DJ (2014) Use of multiple criteria in an ecological assessment of a prairie restoration chronosequence. Appl Veg Sci 17:63–73. doi:10.1111/avsc.12051

    Article  Google Scholar 

  • Hemerik L, Brussaard L (2002) Diversity of soil macro-invertebrates in grasslands under restoration succession. Eur J Soil Biol 38:145–150

    Article  Google Scholar 

  • Hilderbrand RH, Watts AC, Randle AM (2005) The myths of restoration ecology. Ecol Soc 10:19

    Article  Google Scholar 

  • Hobbs RJ, Norton DA (1996) Towards a conceptual framework for restoration ecology. Restor Ecol 4:93–110

    Article  Google Scholar 

  • Holliday NJ (1991) Species responses of carabid beetles (Coleoptera: Carabidae) during post-fire regeneration of boreal forest. Can Entomol 123:1369–1389. doi:10.4039/Ent1231369-6

    Article  Google Scholar 

  • Honek A, Martinkova Z, Saska P, Pekar S (2007) Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl Ecol 8:343–353

    Article  Google Scholar 

  • Kahmen S, Poschlod P (2004) Plant functional trait responses to grassland succession over 25 years. J Veg Sci 15:21–32

    Article  Google Scholar 

  • Kotze DJ, O’Hara RB, Lehvävirta S (2012) Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. PLoS ONE 7:e40923. doi:10.1371/journal.pone.0040923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228

    Article  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Laliberté E, Legendre P, Shipley B, Laliberté ME (2014) Package ‘FD.’ Version 1:12

  • Lang A (2003) Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia 134:144–153

    Article  PubMed  Google Scholar 

  • Lang A, Filser J, Henschel JR (1999) Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric Ecosyst Environ 72:189–199

    Article  Google Scholar 

  • Larochelle A, Larivière M-C (2003) Natural history of the ground-beetles (Coleoptera: Carabidae) of America north of Mexico

  • Lebrija-Trejos E, Pérez-García EA, Meave JA et al (2010) Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91:386–398

    Article  PubMed  Google Scholar 

  • Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, Dordrecht

    Google Scholar 

  • Magura T, Tóthmérész B, Molnár T (2004) Changes in carabid beetle assemblages along an urbanisation gradient in the city of Debrecen, Hungary. Landsc Ecol 19:747–759. doi:10.1007/s10980-005-1128-4

    Article  Google Scholar 

  • Mason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • McAlpine C, Catterall CP, Nally RM et al (2016) Integrating plant- and animal-based perspectives for more effective restoration of biodiversity. Front Ecol Environ 14:37–45. doi:10.1002/16-0108.1

    Article  Google Scholar 

  • McCravy KW, Lundgren JG (2011) Carabid beetles (Coleoptera: Carabidae) of the Midwestern United States: a review and synthesis of recent research. Terr Arthropod Rev 4:63–94

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Messer PW (2009) An annotated checklist of Wisconsin ground beetles (Coleoptera: Carabidae). Gt Lakes Entomol 42:30–61

    Google Scholar 

  • Moretti M, Bello F, Ibanez S et al (2013) Linking traits between plants and invertebrate herbivores to track functional effects of land-use changes. J Veg Sci 24:949–962

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. doi:10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Murdock JN, Gido KB, Dodds WK et al (2010) Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought. Ecology 91:1048–1062

    Article  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P et al (2007) The vegan package

  • Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Article  Google Scholar 

  • Packard S, Mutel CF et al (1997) The tallgrass restoration handbook: for prairies, savannas and woodlands. DC, Island Press, Washington

    Google Scholar 

  • Pakeman RJ, Stockan JA (2014) Drivers of carabid functional diversity: abiotic environment, plant functional traits, or plant functional diversity? Ecology 95:1213–1224

    Article  PubMed  Google Scholar 

  • Palmer MA, Ambrose RF, Poff NLR (1997) Ecological theory and community restoration ecology. Restor Ecol 5:291–300

    Article  Google Scholar 

  • Panzer R (2002) Compatibility of prescribed burning with the conservation of insects in small, isolated prairie reserves. Conserv Biol 16:1296–1307. doi:10.1046/j.1523-1739.2002.01077.x

    Article  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-lerm ltudies. Long-term studies in ecology. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, et al (2014) Linear and nonlinear mixed effects models. R Package Version 3:57

  • Pöyry J, Lindgren S, Salminen J, Kuussaari M (2004) Restoration of Butterfly and Moth Communities in Semi-Natural Grasslands by Cattle Grazing. Ecol Appl 14:1656–1670. doi:10.1890/03-5151

    Article  Google Scholar 

  • Pöyry J, Luoto M, Paukkunen J et al (2006) Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos 115:401–412

    Article  Google Scholar 

  • Pöyry J, Paukkunen J, Heliölä J, Kuussaari M (2009) Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. Oecologia 160:577–587. doi:10.1007/s00442-009-1328-7

    Article  PubMed  Google Scholar 

  • Pryke JS, Samways MJ (2012) Importance of using many taxa and having adequate controls for monitoring impacts of fire for arthropod conservation. J Insect Conserv 16:177–185. doi:10.1007/s10841-011-9404-9

    Article  Google Scholar 

  • Retana J, Arnan X, Cerdá X (2015) A multidimensional functional trait analysis of resource exploitation in European ants. Ecology 96:2781–2793

    Article  PubMed  Google Scholar 

  • Rowe HI (2010) Tricks of the Trade: Techniques and Opinions from 38 Experts in Tallgrass Prairie Restoration. Restor Ecol 18:253–262. doi:10.1111/j.1526-100X.2010.00663.x

    Article  Google Scholar 

  • Samson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44:418–421

    Article  Google Scholar 

  • Samson FB, Knopf FL (1996) Prairie conservation: preserving North America’s most endangered ecosystem. Island Press, Washington, DC

    Google Scholar 

  • Schirmel J, Blindow I, Buchholz S (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606–614

    Article  Google Scholar 

  • Sluis WJ (2002) Patterns of species richness and composition in re-created grassland. Restor Ecol 10:677–684. doi:10.1046/j.1526-100X.2002.01048.x

    Article  Google Scholar 

  • Steiner M, Öckinger E, Karrer G et al (2016) Restoration of semi-natural grasslands, a success for phytophagous beetles (Curculionidae). Biodivers Conserv 25:3005–3022. doi:10.1007/s10531-016-1217-4

    Article  Google Scholar 

  • Suding KN (2011) Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst 42:465–487

    Article  Google Scholar 

  • Török P, Vida E, Deák B et al (2011) Grassland restoration on former croplands in Europe: an assessment of applicability of techniques and costs. Biodivers Conserv 20:2311–2332. doi:10.1007/s10531-011-9992-4

    Article  Google Scholar 

  • Van Andel J, Aronson J (2012) Restoration ecology: the new frontier. Wiley, New York

    Book  Google Scholar 

  • van Noordwijk CGE, Baeten L, Turin H et al (2017) 17 years of grassland management leads to parallel local and regional biodiversity shifts among a wide range of taxonomic groups. Biodivers Conserv 26:717–734. doi:10.1007/s10531-016-1269-5

    Article  Google Scholar 

  • Vandewalle M, De Bello F, Berg MP et al (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers Conserv 19:2921–2947

    Article  Google Scholar 

  • Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522

    Article  PubMed  Google Scholar 

  • Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • WallisDeVries MF, Ens SH (2010) Effects of habitat quality and isolation on the colonization of restored heathlands by butterflies. Restor Ecol 18:390–398

    Article  Google Scholar 

  • WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273. doi:10.1016/S0006-3207(01)00191-4

    Article  Google Scholar 

  • Weaver SE (2001) The biology of Canadian weeds. 115. Conyza canadensis. Can J Plant Sci 81:867–875. doi:10.4141/P00-196

    Article  Google Scholar 

  • Willand JE, Baer SG, Gibson DJ, Klopf RP (2013) Temporal dynamics of plant community regeneration sources during tallgrass prairie restoration. Plant Ecol 214:1169–1180

    Article  Google Scholar 

  • Wodika BR, Baer SG (2015) If we build it, will they colonize? A test of the field of dreams paradigm with soil macroinvertebrate communities. Appl Soil Ecol 91:80–89. doi:10.1016/j.apsoil.2015.02.005

    Article  Google Scholar 

  • Wodika BR, Klopf RP, Baer SG (2014) Colonization and recovery of invertebrate ecosystem engineers during prairie restoration. Restor Ecol 22:456–464

  • Woodcock BA, Vogiatzakis IN, Westbury DB et al (2010) The role of management and landscape context in the restoration of grassland phytophagous beetles. J Appl Ecol 47:366–376

    Article  Google Scholar 

  • Woodcock BA, Bullock JM, Mortimer SR, Pywell RF (2012) Limiting factors in the restoration of UK grassland beetle assemblages. Biol Conserv 146:136–143

    Article  Google Scholar 

  • Woodcock BA, Harrower C, Redhead J et al (2014) National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key UK arable crops. J Appl Ecol 51:142–151

    Article  Google Scholar 

  • Young TP, Chase JM, Huddleston RT (2001) Community succession and assembly: comparing, contrasting and combining paradigms in the context of ecological restoration. Ecol Restor 19:5–18

    Article  Google Scholar 

Download references

Acknowledgements

The Nature Conservancy and the staff and volunteers at Nachusa Grasslands provided invaluable support for this research. We also thank the numerous undergraduates who provided field and laboratory assistance. This study was funded by Friends of Nachusa Grasslands, NIU Office of Student Engagement and Experiential Learning, WIU School of Graduate Studies, and Prairie Biotic Research, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Barber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Jens Wolfgang Dauber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, N.A., Lamagdeleine-Dent, K.A., Willand, J.E. et al. Species and functional trait re-assembly of ground beetle communities in restored grasslands. Biodivers Conserv 26, 3481–3498 (2017). https://doi.org/10.1007/s10531-017-1417-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1417-6

Keywords

Navigation