Skip to main content

Advertisement

Log in

Microarthropod communities of industrially disturbed or imported soils in the High Arctic; the abandoned coal mining town of Pyramiden, Svalbard

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The terrestrial environment of the High Arctic consists of a mosaic of habitat types, both natural and anthropogenic. At the abandoned coal mining town of Pyramiden, Svalbard, topsoil was imported from southern European Russia. This, and further industrial disturbance in the town, offers new opportunities for the native invertebrate fauna, but may also introduce alien, potentially invasive, species. Few studies have examined anthropogenic habitats in the High Arctic. But increasing activity, including industry and tourism, requires an understanding of the responses of the Arctic to such pressures. The microarthropod communities observed in the settlement were substantially different from the natural tundra. In the settlement, nine species of mesostigmatid mite occurred (three new records for Svalbard; Dendrolaelaps foveolatus) and two additional not identified to species (Halolaelaps sp., Arctoseius sp.), 26 species of Collembola (12 not seen in the natural tundra close to Pyramiden) and two new records (Thalassaphorura debilis and Desoria tigrina), but only five Oribatida. This is set against 8, 20 and 24 species respectively for Mesostigmata, Oribatida and Collembola from natural tundra in the vicinity. The imported soils remain to be yet fully exploited by the native microarthropod fauna. Taxa disparities may result from differential mortality during collection and shipping of the soil, and subsequent colonisation. While none of the introduced species appear to be invasive, responses to climate change scenarios are difficult to project. Understanding of alien species and the timespans required for colonization by native faunas are of importance for remediation and reclamation projects in polar regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACIA (2005) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • AMAP (2012) Arctic climate issues 2011: changes in Arctic snow, water, ice and permafrost SWIPA 2011 overview report. Arctic Monitoring and Assessment Programme (AMAP), Oslo

  • Andreassen E, Bjerck HB, Olsen B (2010) Persistent memories: Pyramiden—a Soviet mining town in the High Arctic. Akademika forlag, Trondheim. ISBN 9788251924368

    Google Scholar 

  • Ávila-Jiménez ML, Coulson SJ (2011) A Holarctic biogeographical analysis of the Collembola (Arthropoda, Hexapoda) unravels recent post-glacial colonization patterns. Insects 2:273–296

    Article  Google Scholar 

  • Ávila-Jiménez ML, Gwiazdowicz DJ, Coulson SJ (2011) On the mesostigmatid (Acari: Parasitiformes) mite fauna of Svalbard: a revised checklist of a High Arctic archipelago. Zootaxa 3091:33–41

    Google Scholar 

  • Bayartogtokh B, Schatz H, Ekrem T (2011) Distribution of the soil mites of Svalbard with redescriptions of three known species (Acari: Oribatida). Int J Acarol 37:467–484

    Article  Google Scholar 

  • Behan-Pelletier V (1997) Oribatid mites (Acari: Oribatida) of the Yukon. In: Danks HV, Downes JA (eds) Insects of the Yukon. Biological Survey of Canada, Ottawa, pp 115–149

    Google Scholar 

  • Belkina O, Borovichev E, Davydov D, Konoreva L, Koroleva N, Likhachev A, Petrova O, Savchenko A (2013) The study of flora and vegetation of Pyramiden Settlement and its vicinity. 30/07-2013 NA Avrorin Polar-Alpine Botanical Garden, Institute Russian Academy of Sciences Apatity

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. TREE 26:333–339. doi:10.1016/j.tree.2011.03.023

    PubMed  Google Scholar 

  • Błaszak C, Ehrnsberger R, Gwiazdowicz DJ (2001) Beschreibung des Männchens von Halolaelaps (Haloseius) sexclavatus (Oudemans, 1902) (Acari, Gamasida: Halolaelapidae). Osnabrücker Naturwiss Mitt 27:99–101

    Google Scholar 

  • Bliss LC, Matveyeva NV (1992) Circumpolar Arctic vegetation. In: Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. An ecophysiological perspective. Academic Press, San Diego, pp 59–89

    Chapter  Google Scholar 

  • Caruso T, Migliorini M, Bucci C, Bargagli R (2009) Spatial patterns and autocorrelation in the response of microarthropods to soil pollutants: the example of oribatid mites in an abandoned mining and smelting area. Environ Pollut 157:2939–2948

    Article  CAS  PubMed  Google Scholar 

  • Colloff MJ (1993) A taxonomic revision of the oribatid mite genus Camisia (Acari: Oribatida) J. Nat Hist 27:1325–1408

    Article  Google Scholar 

  • Cooper EJ (2011) Polar desert vegetation and plant recruitment in Murchisonfjord. Geogr Ann 93:243–252. doi:10.1111/j1468-0459201100426x

    Article  Google Scholar 

  • Cortet J, Gomot-De Vauflery A, Poinsot-Balaguer N, Gomot L, Texier C, Cluzeau D (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35:115–134. doi:10.1016/S1164-5563(00)00116-3

    Article  CAS  Google Scholar 

  • Coulson SJ (2007) The terrestrial and freshwater invertebrate fauna of the High Arctic archipelago of Svalbard. Zootaxa 1448:41–58

    Google Scholar 

  • Coulson SJ, Refseth D (2004) The terrestrial and freshwater invertebrate fauna of Svalbard (and Jan Mayen). In: Prestrud P, Strøm H, Goldman H (eds) A catalogue of the terrestrial and marine animals of Svalbard. Norwegian Polar Institute, Tromsø, pp 57–122

    Google Scholar 

  • Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of Arctic soil organisms during winter. Arct Antarct Alp Res 27:365–371

    Google Scholar 

  • Coulson SJ, Hodkinson ID, Webb NR (2003) Microscale distribution patterns in High Arctic soil microarthropod communities: the influence of the vegetation mosaic. Ecography 26:801–809

    Article  Google Scholar 

  • Coulson SJ, Fjellberg A, Gwiazdowicz DJ, Lebedeva NV, Melekhina EN, Solhøy T, Erséus C, Maraldo K, Miko L, Schatz H, Schmelz RM, Søli G, Stur E (2013a) Introduction of invertebrates into the High Arctic via imported soils: the case of Barentsburg in the Svalbard. Biol Invasions 15:1–5. doi:10.1007/s10530-012-0277-y

    Article  Google Scholar 

  • Coulson SJ, Fjellberg A, Gwiazdowicz DJ, Lebedeva NV, Melekhina EN, Solhøy T, Erséus C, Maraldo K, Miko L, Schatz H, Schmelz RM, Søli G, Stur E (2013b) The invertebrate fauna of anthropogenic soils in the High Arctic settlement of Barentsburg. Svalbard. Polar Res 32:19273. doi:10.3402/polarv32i019273

    Google Scholar 

  • Coulson SJ, Convey P, Aakra K, Aarvik L, Ávila-Jiménez ML, Babenko A, Biersma E, Boström S, Brittain J, Carlsson AM, Christoffersen KS, De Smet WH, Ekrem T, Fjellberg A, Füreder L, Gustafsson D, Gwiazdowicz DJ, Hansen LO, Holmstrup M, Hågvar S, Kaczmarek L, Kolicka M, Kuklin V, Lakka H-K, Lebedeva N, Makarova O, Maraldo K, Melekhina E, Ødegaard F, Pilskog HE, Simon JC, Sohlenius B, Solhøy T, Søli G, Stur E, Tanaevitch A, Taskaeva A, Velle G, Zmudczyńska-Skarbek K (2014) The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea; Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biol Biochem 68:440–470

    Article  CAS  Google Scholar 

  • Danks HV (1981) Arctic arthropods. A review of systematics and ecology with particular reference to the North American Fauna. Entomological Society of Canada, Ottawa

    Google Scholar 

  • Descamps S (2013) Winter temperature affects the prevalence of ticks in an Arctic seabird. PLoS ONE 8:e65374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunger W (1994) Synopses on palaearctic Collembola, vol 1 :Tullbergiinae. The Museum of Natural History, Görlitz

    Google Scholar 

  • Dunger W, Schulz J, Zimdars B, Hohberg K (2004) Changes in collembolan species composition in Eastern German mine sites over fifty years of primary succession. Pedobiologia 48:503–517

    Article  Google Scholar 

  • Eidesen PB, Ehrich D, Bakkestuen V, Alsos IG, Gilg O, Taberlet P, Brochmann C (2013) Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytol 200:898–910

    Article  PubMed  Google Scholar 

  • Fjellberg A (1998) The Collembola of Fennoscandia and Denmark Part I: Poduromorpha Fauna. Entomol Scand 35, Brill, Leiden

  • Fjellberg A (2007) The Collembola of Fennoscandia and Denmark Part II: Entomobryomorpha and Symphypleona Fauna Entomol Scand 42. Brill, Leiden

    Book  Google Scholar 

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Ad Met 2011. Article ID 893790. doi: 101155/2011/893790

  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a “Standard” soil arthropod. Ann Rev Entomol 50:201–222. doi:10.1146/annurev.ento.50.071803.130331

    Article  CAS  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk P, Convey P, Skotnicki M, Bergstrom D (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Frouz J, Van Diggelen R, Pižl V, Starý J, Hánĕl L, Tajovský K, Kalčik J (2009) The effect of topsoil removal in restored heathland on soil fauna, topsoil microstructure, and cellulose decomposition: implications for ecosystem restoration. Biodiversity Conserv 18:3963–3978

    Article  Google Scholar 

  • FSHEM (Federal Service for Hydrometeorology and Environmental Monitoring) 2009 Oversikt over forurensning av naturmiljøet, basert på resultater av bakgrunnsmiljøovervåkning og lokal miljøovervåkning, gjort i næringslokalitetene til de russiske bedriftene i Spitsbergen-arkipelet (bygda Barentsburg og de tilgrensende strøk) i 2008 (Overview of the pollution in the natural environment based on the results of background and local environmental monitoring carried out in the industrial areas of the Russian companies in the Spitsbergen archipelago [buildings in Barentsburg and neighbouring areas] in 2008) St Petersburg: Federal Service for Hydrometeorology and Environmental Monitoring Translated from Russian to Norwegian by the Office of the Governor of Svalbard, Longyearbyen

  • Geissen V, Illmann J, Flohr A, Kahrer R, Brümmer GW (1997) Effects og liming and fertilization on Collenmbola in forest soils in relation to soil chemical parameters. Pedobiologia 41:194–201

    Google Scholar 

  • Gilyarov MS (1965) Zoological methods in soil diagnostics. Nauka, Moscow (in Russian)

    Google Scholar 

  • Gilyarov MS, Krivolutsky DA (1975) A key to the soil-inhabiting mites, Sarcoptiformes. Nauka, Moscow (in Russian)

    Google Scholar 

  • Governor of Svalbard (2013) Reiselivsstatistikk for Svalbard 2013. Governor of Svalbard, Longyearbyen

    Google Scholar 

  • Greenslade P, Convey P (2012) Exotic Collembola on subantarctic islands: pathways, origins and biology. Biol Invasions 14:405–417

    Article  Google Scholar 

  • Gwiazdowicz DJ, Coulson SJ (2010) First record of Thinoseius spinosus (Acari, Eviphididae) from the High Arctic island of Spitsbergen (Svalbard) including a key to deutonymphs of genus Thinoseius. Int J Acarol 36:233–236

    Article  Google Scholar 

  • Gwiazdowicz DJ, Teodorowicz E, Coulson SJ (2011a) Redescription of Zercon solenites Haarløv, 1942 (Acari, Zerconidae) with a key to the Svalbard species of the genus Zercon. Int J Acarol 37:135–148

    Article  Google Scholar 

  • Gwiazdowicz DJ, Teodorowicz E, Coulson SJ (2011b) Redescription of Arctoseius haarlovi Lindquist, 1963 (Acari: Ascidae) from Spitsbergen. Entomol Fenn 22:140–148

    Google Scholar 

  • Hågvar S, Solhøy T, Mong CE (2009) Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on oribatid species. Arct Antarct Alp Res 41:219–227

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4. http://folk.uio.no/ohammer/past/

  • Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81:1120–1132

    Article  Google Scholar 

  • Hirschmann W, Wiśniewski J (1982) Weltweite Revision der Gattungen Dendrolaelaps Halbert 1915 und Longoseius Chant 1961 (Parasitiformes). Acarologia 29:148

    Google Scholar 

  • Hisdal V (1998) Svalbard nature and history. Norwegian Polar Institute, Oslo

    Google Scholar 

  • Hodkinson ID (2013) Terrestrial and freshwater invertebrates. In: Meltofte H (ed) Arctic biodiversity assessment status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, pp 194–223

    Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2003) Community assembly on proglacial chronosequences in the High Arctic: vegetation and soil development in north west Svalbard. J Ecol 91:651–653

    Article  Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the High Arctic. J Anim Ecol 73:556–568

    Article  Google Scholar 

  • Holmstrup M, Maraldo K, Krogh PH (2007) Combined effect of copper and prolonged summer drought on soil microarthropods in the field. Environ Poll 146:525–533

    Article  CAS  Google Scholar 

  • Hughes KA, Convey P (2010) The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Global Environ Change 20:96–112

    Article  Google Scholar 

  • Hughes KA, Convey P, Maslen NR, Smith RIL (2010) Accidental transfer of non-native soil organisms into Antarctica on construction vehicles. Biol Invasions 12:875–891

    Article  Google Scholar 

  • Hutson BR (1980) Colonization of industrial reclamation sites by Acari, Collembola and other invertebrates. J App Ecol 17:255–275

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. International Panel on Climate Change. http://ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_LONGERREPORT.pdf. Accessed 3 Nov 2014

  • Jacot AP (1934) Some Hawaiian Oribatoidea (Acarina). Bulletin of the Bernice P. Bishop Museum Bulletin 121. Honolulu: Bernice P. Bishop Museum

  • Jónsdóttir IS (2005) Terrestrial ecosystems on Svalbard: heterogeneity, complexity and fragility from an Arctic island perspective. P Roy Irish Acad B 105:155–165

    Article  Google Scholar 

  • Karg W (1967) Synecological studies of soil mites from forest and agricultural soil. Pedobiologia 7:198–214

    Google Scholar 

  • Karg W (1993) Acari (Acarina), Milben Parasitiformes (Anactinochaeta), Cohors Gamasina Leach Raubmilben Die Tierwelt Deutschlands, 59 Teil Gustav Fischer Verlag, Jena

  • Kennicutt MC II, Chown SL, Cassano JJ, Liggett D, Peck LS, Massom R, Rintoul SR, Storey J, Vaughan DG, Wilson TJ, Allison I, Ayton J, Badhe R, Baeseman J, Barrett PJ, Bell RE, Bertler N, Bo S, Brandt A, Bromwich D, Cary SC, Clark MS, Convey P, Costa ES, Cowan D, Deconto R, Dunbar R, Elfring C, Escutia C, Francis J, Fricker HA, Fukuchi M, Gilbert N, Gutt J, Havermans C, Hik D, Hosie G, Jones C, Kim YD, Le Maho Y, Lee SH, Leppe M, Leitchenkov G, Li X, Lipenkov V, Lochte K, López-Martínez J, Lüdecke C, Lyons W, Marenssi S, Miller H, Morozova P, Naish T, Nayak S, Ravindra R, Retamales J, Ricci CA, Rogan-Finnemore M, Ropert-Coudert Y, Samah AA, Sanson L, Scambos T, Schloss IR, Shiraishi K, Siegert MJ, Simões JC, Storey B, Sparrow MD, Wall DH, Walsh JC, Wilson G, Winther JG, Xavier JC, Yang H, Sutherland WJ (2014) A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarct Sci 27:3–18. doi:10.1017/S0954102014000674

    Article  Google Scholar 

  • Kolodochka L, Gwiazdowicz DJ (2014) A new species of predaceous mite of the genus Neoseiulus Hughes (Parasitiformes, Phytoseiidae), with redescriptions of N magnanalis (Thor) and N ellesmerei (Chant et Hansell), from Svalbard, High Arctic. Zootaxa 3793:441–452

    Article  PubMed  Google Scholar 

  • Krivolutsky DA, Lebren P, Kunst M (1995) Oribatid mites: morphology, development, phylogeny, ecology, methods of study, model species Nothrus palustris CL Koch, 1839. Nauka, Moscow

    Google Scholar 

  • Kuznetsova NA (2009) Soil-dwelling Collembola in coniferous forests along the gradient of pollution with emissions from the Middle Ural copper smelter. Russ J Ecol 40:415–423. doi:10.1134/S106741360906006X

    Article  Google Scholar 

  • Kuznetsova NA, Potapov MB (1997) Changes in structure communities of soil springtails (Hexapoda, Collembola) under industrial pollution of the south taiga Billbery pine forest. Russ J Ecol 28:386–392 (in Russian)

    Google Scholar 

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2011) Wind dispersal of oribatid mites as a mode of migration. Pedobiologia 54:201–207

    Article  Google Scholar 

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2012) Active dispersal of oribatid mites into young soils. App Soil Ecol 55:10–19

    Article  Google Scholar 

  • Liška J, Soldán Z (2004) Alien vascular plants recorded from the Barentsburg and Pyramiden settlements, Svalbard. Preslia 76:279–290

    Google Scholar 

  • Melekhina EN (2007) Effect of oil pollution on soil microfauna of tundra communities of the far-north taiga. Ecologiya Cheloveka 1:16–23

    Google Scholar 

  • Melekhina EN (2011) Taxonomic diversity and areology of oribatid mites (Oribatei) of the European North of Russia Izvestiya Komi nauchnogo centra UrO RAN 2:30-37

  • Melekhina EN (2012) Recovery succession of microarthropods in soils with oil pollution. In: Revin VV, Kuznetsov VA, Andreychev AV (eds) Animals: ecology, biology and conservation proceedings of the scientific conference with international participation. University of Mordovia, Saransk, pp 250–251

    Google Scholar 

  • Melekhina EN, Zinovjeva AN (2012) The first data on oribatid mites (Acari: Oribatida) of Pay—Khoy ridge (Yugor peninsula) Izvestiya Komi nauchnogo centra UrO RAN 2:42–50

  • Menezes-Oliveira VB, Scott-Fordsmand JJ, Soares AMVM, Amorim MJB (2014) Development of ecosystems to climate change and the interaction with pollution—unpredictable changes in community structures. App Soil Ecol 75:24–32

    Article  Google Scholar 

  • Moore FR, Luxton M (1988) The distribution of Collembola on a coal shale heap. Pedobiologia 31:157–168

    Google Scholar 

  • Nielsen UN, Wall D (2013) The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol Lett 16:409–419

    Article  PubMed  Google Scholar 

  • Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) Manual of acarology. Texas Tech University Press, Lubbock, pp 421–564

    Google Scholar 

  • Pedersen H (2011) PCB på Svalbard Rapport 2011. Governor of Svalbard, Longyearbyen

    Google Scholar 

  • Pilskog HE, Solhøy T, Gwiazdowicz DJ, Grytnes JA, Coulson SJ (2014) Invertebrate communities inhabiting nests of migrating passerine, wild fowl and sea birds breeding in the High Arctic, Svalbard. Polar Biol 37:981–998

    Article  Google Scholar 

  • Pomorski RJ, Skarzynski D (2001) Springtails (Collembola) collected in Chupa Inlet region (N Karelia, Russia). Acta Universitas Wratislawensis 1744. Prace Zool 29:47–57

    Google Scholar 

  • Ponge JF (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia 37:223–244

    Google Scholar 

  • Potapov M (2001) Synopses on palaearctic Collembola, vol 3. Isotomidae The Museum of Natural History, Görlitz

    Google Scholar 

  • Riabinin NA, Pan’kov AN (2009) Successions of oribatid mites (Acariformes: Oribatida) on disturbed areas. Biol Bull 36:510–515

    Article  Google Scholar 

  • Rønning OI (1979) Svalbards flora. Norwegian Polar Institute, Oslo

    Google Scholar 

  • Schatz H, Behan-Pelletier V, O’Connor B, Norton RA (2011) Suborder Oribatida van der Hammen, 1968. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:141–148

    Google Scholar 

  • Scheu S, Schulz E (1996) Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodivers Conserv 5:235–250

    Article  Google Scholar 

  • Schneider C, D’Haese CA (2013) Morphological and molecular insights on Megalothorax: the largest Neelipleona genus revisited (Collembola). Invert Syst 27:317–364

    Google Scholar 

  • Seniczak S, Plichta V (1978) Structural dependence of moss mite populations (Acari, Oribatei) on patchiness of vegetation in moss/lichen tundra. Pedobiologia 18:145–152

    Google Scholar 

  • Seniczak S, Seniczak A, Gwiazdowicz DJ, Coulson SJ (2014) Community structure of oribatid and gamasid mites (Acari) in moss-grass tundra in Svalbard (Spitsbergen, Norway). Arct Antarct Alp Res 46:591–599

    Article  Google Scholar 

  • Siepel H (1996) Biodiversity of soil microarthropods: the filtering of species. Biodiversity Conserv 5:251–260. doi:10.1007/BF00055834

    Article  Google Scholar 

  • Skubała P, Zaleski T (2012) Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida). Gradient study in meadow ecosystems Sci Total Environ 414:364–372

    Article  Google Scholar 

  • Sømme L, Birkemoe T (1999) Demography and population densities of Folsomia quadrioculata (Collembola, Isotomidae) on Spitsbergen. Norw J Entomol 46:3545

    Google Scholar 

  • Søvik G, Leinaas HP, Ims RA, Solhøy T (2003) Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari: Oribatida) on the High Arctic archipelago of Svalbard. Pedobiologia 47:257–271

    Article  Google Scholar 

  • St John MG, Bagatto G, Behan-Pelletier V, Lindquist EE, Shorthouse JD, Smith IM (2002) Mite (Acari) colonization of vegetated mine tailings near Sudbury, Ontario, Canada. Plant Soil 245:295–305

    Article  CAS  Google Scholar 

  • St John MG, Wall DH, Hunt HW (2006a) Are soil mite assemblages structured by the identity of native and invasive alien grasses. Ecology 87:1314–1324

    Article  PubMed  Google Scholar 

  • St John MG, Wall DH, Behan-Pelletier VM (2006b) Does plant species co-occurrence influence soil mite diversity? Ecology 87:625–633

    Article  PubMed  Google Scholar 

  • Stebaeva SK, Andrievsky VS (1997) Collembola and Oribatei of brown coal dumps in Sibiria. Zool Zh 76:1004–1015 (in Russian)

    Google Scholar 

  • Taskaeva AA (2011) Collembola of pine forests in a pollution gradient of Timber Industry Complex emission IzvPenz gos pedagog univ imi VG Belinskogo 25:475–483

    Google Scholar 

  • Teodorowicz E, Gwiazdowicz DJ, Coulson SJ (2014) Redescription of Antennoseius (Vitzthumia) oudemansi (Acari, Mesostigmata) from Spitsbergen, Svalbard. Entomol Fenn 25:27–42

    Google Scholar 

  • Thibaud JM, Schulz HJ, da Gama Assalino MM (2004) Synopses on Palaearctic Collembola, vol 4: Hypogastruridae, vol 4. The Museum of Natural History, Görlitz

    Google Scholar 

  • Tullgren A (1918) Ein sehr einfacher Auslesgeapparat fur terricole Tierformen. Z Angew Ent 4:149–150

    Google Scholar 

  • Vincent WF, Callaghan TV, Dahl-Jensen D, Johansson M, Kovacs KM, Michel C, Prowse T, Reist JD, Sharp M (2011) Ecological implications of changes in the Arctic cryosphere. Ambio 40:87–99. doi:10.1007/s13280-011-0218-5

    Article  PubMed Central  Google Scholar 

  • Wanner M, Dunger W (2002) Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. Eur J Soil Biol 38:137–143

    Article  Google Scholar 

  • Ware C, Bergstrom DM, Müller E, Alsos IG (2012) Humans introduce viable seeds to the Arctic on footwear. Biol Invasions 14:567–577. doi:10.1007/s13280-011-0218-5

    Article  Google Scholar 

  • Ware C, Berge J, Sundet JH, Kirkpaterick JB, Coutts ADM, Jelmert A, Olsen SM, Floerl O, Wisz MS, Alsos IG (2014) Climate change, non-indigenous species and shipping: assessing the risk of species introduction to a High-Arctic archipelago. Div Distrib 20:10–19. doi:10.1111/ddi.12117

    Article  Google Scholar 

  • Westergaard KB, Alsos IG, Popp M, Flatberg KI, Brochmann C (2011) Glacial survival may matter after all: nunatak signatures in the rare European populations of two west-Arctic species. Mol Ecol 20:376–393

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The fieldwork was funded via Norwegian Research Council project AVIFauna (6172/S30) and internal funding from the University Centre in Svalbard (UNIS). The Governor of Svalbard (Sysselmannen på Svalbard) is acknowledged for providing permission for the fieldwork. The Svalbard temperature data series used in this study was obtained from the eKlima internet data portal hosted by the Norwegian Meteorological Institute. We are grateful to the chief editor of the journal “Russkii Vestnik Spitsbergena” N. Shmatova for assistance in contacting the Arktikulgol Trust archives and N. Myski for historical information on lawns and farming in the settlement of Pyramiden. We also thank N.E.Koroleva for examining and identifying some species of vascular plants and L.A.Konoreva for consultation on lichens collected in Pyramiden, Prof. A. Sjöblom for help producing Fig. 1 and, finally, the three anonymous reviewers who provided valuable contributions to improve to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Coulson.

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Supplementary material 2 (DOC 120 kb)

Supplementary material 3 (DOC 119 kb)

Fig. S1

Sampling sites in the settlement of Pyramiden. hd- A: Close to main road in vicinity of helicopter pad, hd- B: Wood chippings and scrapings from animal houses, hd- C: east side of animal house, hd- D: north side of animal house, hd- E: saltmarsh vegetation to south-east of fuel storage tanks, is- F: close to road behind housing block, is- G: Close to location where greenhouses stood, nest- H, kittiwake nest material beneath housing block close to Tulip Hotel (JPEG 7371 kb)

Fig. S2

Undisturbed ground at Pyramiden (site un- I). Picture orientation approximately north (JPEG 1458 kb)

Fig. S3

Natural vegetation on the raised beaches at Skottehytta (site un- Z), Picture orientation approximately north-west (JPEG 7849 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulson, S.J., Fjellberg, A., Melekhina, E.N. et al. Microarthropod communities of industrially disturbed or imported soils in the High Arctic; the abandoned coal mining town of Pyramiden, Svalbard. Biodivers Conserv 24, 1671–1690 (2015). https://doi.org/10.1007/s10531-015-0885-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0885-9

Keywords

Navigation