Skip to main content
Log in

Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Biological soil crusts (BSCs) can play an important role in hydrological cycles, especially in dryland ecosystems where the availability of water is limited. Many factors influence the hydrological behavior of BSCs, one of which is the microstructure. In order to describe the influence of the soil microstructure of BSCs on water redistribution, we investigated the change of the pore system of three different successional stages of BSCs, as well as their respective subcrusts in the NW Negev desert, Israel, using 2-dimensional thin sections, as well as non-invasive X-ray 3D computed microtomography (XCMT) and mercury intrusion porosimetry. Our results show that the pore system undergoes significant changes during crust succession. Both the total porosity, as well as the pore sizes significantly increased from cyano- to lichen- to mosscrust and the pore geometry changed from tortuous to straight pore shapes. We introduce two new mechanisms that contribute to the hydrological properties of the BSCs in the NW Negev that impede infiltration: (i) vesicular pores and (ii) a discontinuous pore system with capillary barrier effects, caused by a rapid change of grain sizes due to sand burial. Since both of these mechanisms are present mostly in early stage cyanobacterial crusts and their abundance decreases strongly with succession, it is very likely that they influence BSC hydrology to different extents in the various crust types and that they are partly responsible for differences in runoff in the NW Negev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almog R, Yair A (2007) Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area. Catena 70(3):437–442

    Article  Google Scholar 

  • Beckmann T (1997) Preparation of soil thin sections for micromorphological research. In: Hohenheimer bodenkundliche hefte. Mikromophologische Methoden in der Bodenkunde, pp89–103

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20(15):3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142

    Article  Google Scholar 

  • Berkeley A, Thomas AD, Dougill AJ (2005) Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands. African J Ecol 43(2):137–145

    Article  Google Scholar 

  • Blume H, Beyer L, Pfisterer U et al (2008) Soil characteristics and pattern of the Nizzana research site. In: Breckle S, Yair A, Veste M (eds) Arid dune ecosystems. The Nizzana sands in the Negev Desert Springer, Berlin, pp 65–77 1 online resource (xxvi, 475

    Chapter  Google Scholar 

  • Büdel B, Veste M (2008) Biological crusts. In: Yair A, Veste M (eds) Arid dune ecosystems. The Nizzana sands in the Negev Desert Springer, Berlin, pp 149–155 1 online resource (xxvi, 475

    Chapter  Google Scholar 

  • Chamizo S, Cantón Y, Rodríguez-Caballero E et al (2012) Runoff at contrasting scales in a semiarid ecosystem: a complex balance between biological soil crust features and rainfall characteristics. J Hydrol 452–453:130–138

    Article  Google Scholar 

  • Coppola A, Basile A, Wang X et al (2011) Hydrological behaviour of microbiotic crusts on sand dunes: example from NW China comparing infiltration in crusted and crust-removed soil. Soil Tillage Res 117:34–43

    Article  Google Scholar 

  • Darby BJ, Neher DJ, Belnap J (2010) Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant Soil 328:421–431

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Morillas L, Maestre FT et al (2013) Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372:643–654

    Article  CAS  Google Scholar 

  • Dietze M, Bartel S, Lindner M et al (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96

    Article  CAS  Google Scholar 

  • Drahorad SL, Felix-Henningsen P (2012) An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability. Z. Pflanzenernähr. Bodenk. 175(4):519–520

    Article  Google Scholar 

  • Drahorad SL, Felix-Henningsen P (2013) Application of an electronic micropenetrometer to assess mechanical stability of biological soil crusts. J Plant Nutr Soil Sci:n/a 176:904–909

    Article  CAS  Google Scholar 

  • Drahorad SL, Felix-Henningsen P, Eckhardt K et al (2013) Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J Arid Environ 94:18–26

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT et al (2010) Interactive effects of three ecosystem engineers on infiltration in a semi-arid mediterranean Grassland. Ecosystems 13(4):499–510

    Article  Google Scholar 

  • Evenari M, Yaalon DH, Guttermann Y (1974) Note on soils with vesicular structure in deserts. Z für Geomorphol 18:162–172

    Google Scholar 

  • Felix-Henningsen P, Rummel B, Blume H (2008) Soil processes and salt dynamics in dune soils. In: Breckle S, Yair A, Veste M (eds) Arid dune ecosystems. The Nizzana sands in the Negev Desert Springer, Berlin, pp 225–238 1 online resource (xxvi, 475

    Chapter  Google Scholar 

  • Ferreiro JP, Miranda JGV, Vazquez EV (2010) Multifractal analysis of soil porosity based on mercury injection and nitrogen adsorption. Vadose Zone J 9:325–335

    Article  CAS  Google Scholar 

  • Figueira H, Stoops G (1983) Application of micromorphometric techniques to the experimental study of vesicular layer formation. Pedologie 33(1):77–89

    Google Scholar 

  • Fischer T, Veste M, Wiehe W et al (2010) Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena 80:47–52

    Article  Google Scholar 

  • Ganor E (1991) The composition of clay minerals transported to israel as indicators of saharan dust emission. Atmos Environ 25(12):2657–2664

    Article  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zhao H, Zuo X et al (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54:653–662

    Article  CAS  Google Scholar 

  • Hernandez RR, Sandquist DR (2011) Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub. Plant Ecol 212(10):1709–1721

    Article  Google Scholar 

  • Ho CK, Webb SW (1998) Capillary barrier performance in heterogeneous porous media. Water Resour Res 34(4):603–609

    Article  CAS  Google Scholar 

  • Hu C, Zhang D, Huang Z et al (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257(1):97–111

    Article  CAS  Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Berkowicz SM (2000) Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel. Int J Biometeorol 43:184–190

    Article  CAS  PubMed  Google Scholar 

  • Kidron GJ, Yair A (1997) Rainfall-runoff relationship over encrusted dune surfaces, Nizzana, Western Negev, Israel. Earth Surf Proc Land 22:1169–1184

    Article  Google Scholar 

  • Kidron GJ, Yaalon DH, Vonshak A (1999) Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci 164(1):18–27

    Article  CAS  Google Scholar 

  • Kidron GJ, Vonshak A, Dor I et al (2010) Properties and spatial distribution of microbiotic crusts in the Negev Desert, Israel. Catena 82:92–101

    Article  CAS  Google Scholar 

  • Kidron GJ, Monger HC, Vonshak A et al (2012) Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 139–140:484–494

    Article  Google Scholar 

  • Lan S, Wu L, Zhang D et al (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65(1):77–88

    Article  Google Scholar 

  • Lichner L, Hallett PD, Drongová Z et al (2013) Algae influence the hydrophysical parameters of a sandy soil. Catena 108:58–68

    Article  Google Scholar 

  • Lindquist B, Lee S, Oh W et al (2005) 3DMA-Rock: A software package for automated analysis of rock pore structure in 3-D computed microtomography images. http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html#Sec_Intro. Accessed 14 Nov 2013

  • Littmann T, Berkowicz SM (2008) The regional climatic setting. In: Breckle S, Yair A, Veste M (eds) Arid dune ecosystems. The Nizzana sands in the Negev Desert Springer, Berlin, pp 49–63 1 online resource (xxvi, 475

    Chapter  Google Scholar 

  • Liu Y, Li X, Jia R et al (2011) Effects of biological soil crusts on soil nematode communities following dune stabilization in the Tengger Desert, Northern China. Appl Soil Ecol 49:118–124

    Article  Google Scholar 

  • Mager DM (2010) Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari. Soil Biol Biochem 42(2):313–318

    Article  CAS  Google Scholar 

  • Malam Issa O, Défarge C, Trichet J et al (2009) Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. Catena 77(1):48–55

    Article  Google Scholar 

  • Malam Issa O, Valentin C, Rajot JL et al (2011) Runoff generation fostered by physical and biological crusts in semi-arid sandy soils. Geoderma 167–168:22–29

    Article  Google Scholar 

  • Menon M, Yuan Q, Jia X et al (2011) Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modelling. J Hydrol 397:47–54

    Article  Google Scholar 

  • Miralles-Mellado I, Cantón Y, Solé-Benet A (2011) Two-dimensional porosity of crusted silty soils: indicators of soil quality in semiarid rangelands? Soil Sci Soc Am J 75(4):1330

    Article  CAS  Google Scholar 

  • Morris CE, Stormont JC (1999) Parametric study of unsaturated drainage layers in a capillary barrier. J Geotech Geoenviron Eng 125(12):1057–1065

    Article  Google Scholar 

  • Oh W, Lindquist B (1999) Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 21(7):590–602

    Article  Google Scholar 

  • Pagenkemper SK, Peth S, Uteau D (2013) Effects of root-induced biopore architectures on physical processes investigated with industrial X-ray computed tomography. In: Anderson SH, Hopmans JW et al (eds) Tomography and imaging of soil–water–root processes, 2nd edn. SSSA Special Publication, Madison, pp 69–96

    Google Scholar 

  • Papadopoulos A, Whitmore AP, White RP et al (2009) Combining spatial resolutions in the multiscale analysis of soil pore-size distributions. Vadose Zone J 8(1):227

    Article  Google Scholar 

  • Peth S (2010) Applications of microtomography in soils and sediments. In: Singh B, Gräfe M (eds) Synchrotron-based techniques in soils and sediments. Elsevier, Amsterdam, pp 73–101 1 online resource (1 recurs electrònic (vii, 480

    Chapter  Google Scholar 

  • Peth S, Horn R, Beckmann F et al (2008) Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci Soc Am J 72(4):897

    Article  CAS  Google Scholar 

  • Prasse R, Bornkamm R (2000) Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecol 150:65–75

    Article  Google Scholar 

  • Reynolds RL, Belnap J, Reheis MC et al (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci 98(13):7123–7127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y, Chamizo S et al (2012) Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145–146:81–89

    Article  Google Scholar 

  • Rossi F, Potrafka RM, Garcia-Pichel F et al (2012) The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem 46:33–40

    Article  CAS  Google Scholar 

  • Rummel B, Felix-Henningsen P (2004) Soil water balance of an arid linear sand dune. Int Agrophys 18:333–337

    Google Scholar 

  • Springer ME (1958) Desert pavement and vesicular layer of some soils of the desert of the Lahontan Basin, Nevada1. Soil Sci Soc Am J 22(1):63–66

    Article  Google Scholar 

  • Steenhuis TS, Parlange J, Kim Y et al (2005) Unstable flow. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 4. Elsevier Academic Press, Amsterdam, pp 197–201

    Google Scholar 

  • Su Y, Li XR, Zheng J et al (2009) The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants. J Arid Environ 73(10):931–936

    Article  Google Scholar 

  • Taina IA, Heck RJ, Elliot TR (2008) Application of X-ray computed tomography to soil science: a literature review. Can J Soil Sci 88(1):1–19

    Article  Google Scholar 

  • Tsoar H (2008) Land use and its effect on the mobilization and stabilization of the north-western Negev sand dunes. In: Breckle S, Yair A, Veste M (eds) Arid dune ecosystems. The Nizzana sands in the Negev Desert Springer, Berlin, pp 79–89 1 online resource (xxvi, 475)

    Chapter  Google Scholar 

  • Turk JK, Graham RC (2011) Distribution and properties of vesicular horizons in the western United States. Soil Sci Soc Am J 75(4):1449–1461//1449

    Article  CAS  Google Scholar 

  • Uteau D, Pagenkemper SK, Peth S et al (2013) Aggregate and soil clod volume measurement: a method comparison. Soil Sci Soc Am J 77(1):60

    Article  CAS  Google Scholar 

  • Valentin C, Bresson L (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55:225–245

    Article  Google Scholar 

  • Verrecchia E, Yair A, Kidron GJ et al (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J Arid Environ 29:427–437

    Article  Google Scholar 

  • Webb P, Orr C (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corp, Norcross, Ga

    Google Scholar 

  • Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci Soc Am J 76(5):1685

    Article  CAS  Google Scholar 

  • Yair A (1990) Runoff generation in a sandy area—the nizzana sands, Western Negev, Israel. Earth Surf Proc Land 15:597–609

    Article  Google Scholar 

  • Yair A, Almog R, Veste M (2011) Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: northern Negev desert, Israel. Catena 87:326–333

    Article  Google Scholar 

  • Yonovitz M, Drohan PJ (2009) Pore morphology characteristics of vesicular horizons in undisturbed and disturbed arid soils; implications for arid land management. Soil Use Manag 25(3):293–302

    Article  Google Scholar 

  • Zhang Y, Wang H, Wang X et al (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132(3–4):441–449

    Article  Google Scholar 

  • Zornberg J, McCartney J, Bouazza A (2010) Geosynthetic capillary barriers: current state of knowledge. Geosynth Int 17(5):273–300

    Article  Google Scholar 

Download references

Acknowledgments

We thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for funding this research in the framework of their Trilateral Project “Biotic and abiotic factor affecting biological soil crust formation and recovery in a semiarid dune ecosystem, Gaza and NW Negev” (Project FE 218/14-2), and the Arid Ecosystems Research Center of the Hebrew University of Jerusalem for access to their field sites. Special thanks are due to Simon Berkowicz for his great support during fieldwork and for editing. We also thank the team of the Institute of Plant Nutrition and Soil Science of the University of Kiel for their help during the XCMT analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent John Martin Noah Linus Felde.

Additional information

Communicated by Guest Editors of S.I.: Biocrust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felde, V.J.M.N.L., Peth, S., Uteau-Puschmann, D. et al. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23, 1687–1708 (2014). https://doi.org/10.1007/s10531-014-0693-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0693-7

Keywords

Navigation