Skip to main content

Advertisement

Log in

Bird communities and wind farms: a phylogenetic and morphological approach

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The undeniable environmental benefits of wind energy are undermined by the negative effects of wind farms on bird populations through mortality by collision with the energy-generating structures. Studies have documented morphological, ecological, and behavioral traits associated with vulnerability to wind turbines. However, practically all studies have concentrated on the effects on particular populations, and community-level analyses are lacking. Here we assess the susceptibility of species on the basis of their morphology, and examine the effect of selective mortality on the topology and dispersion of phylogenies, and on the structure and volume of the ecological morphospace of bird assemblages. Using an extensive database of bird occurrences and fatalities in a wind farm located in southern Mexico, and performing null models to establish statistical significance, we compared sets of affected and unaffected species in terms of their wing morphology and position in a phylogeny. We found that birds more likely to fly in the risk zone tend to be smaller, with longer wings, and with heavier wing loadings. Within this group, species more likely to collide with blades and die are smaller, with short wings, and supporting lighter wing loadings. These patterns determine that the set of species less affected distribute in morphospace leaving noticeable holes (morphologies not represented). Birds flying in the risk zone tend to be related to each other, but species that actually collide with turbines belong to several separate clades. These differential effects on morphology and phylogenetic diversity pose important and complex challenges to the conservation of birds in areas where wind farms are being established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alif LA, Khan HA, Shobrak M, Williams J (2011) Cytochrome c oxidase subunit I barcoding of the green bee-eater (Merops orientalis). Genet Mol Res 10:3992–3998

    Article  Google Scholar 

  • Baerwald EF, Barclay RMR (2011) Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. J Wildl Manag 75:1103–1114

    Article  Google Scholar 

  • Baerwald EF, D′Amours GH, Klug BJ, Barclay RMR (2008) Barotrauma is a significant cause of bat fatalities at wind turbines. Curr Biol 18:R695–R696

    Article  PubMed  CAS  Google Scholar 

  • Barrios L, Rodríguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J Appl Ecol 41:72–81

    Article  Google Scholar 

  • Bihn JH, Gebauer G, Brandl R (2010) Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91:782–792

    Article  PubMed  Google Scholar 

  • Binford LC (1989) A distributional survey of the birds of the Mexican state of Oaxaca. Ornithol Monogr 43:1–418

    Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    PubMed  Google Scholar 

  • Brightsmith DJ (2005) Competition, predation, and nest niche shifts among tropical cavity nesters: phylogeny and natural history evolution of parrots (Psittaciformes) and trogons (Trogoniformes). J Avian Biol 36:64–73

    Article  Google Scholar 

  • Cadotte MW, Dinnage R, Tilman D (2012) Phylogenetic diversity promotes ecosystem stability. Ecology 98:S223–S233

    Article  Google Scholar 

  • Carrete M, Sánchez-Zapata J, Benítez JR, Lobón M, Montoya F, Donázar JA (2012) Mortality at wind-farms is positively related to large-scale distribution and aggregation in griffon vultures. Biol Conserv 145:102–108

    Article  Google Scholar 

  • de Lucas M, Janss GFE, Ferrer M (2004) The effect of a wind farm on birds in a migration point: the Strait of Gibraltar. Biodivers Conserv 13:395–407

    Article  Google Scholar 

  • de Lucas M, Janss GFE, Whitfield DP, Ferrer M (2008) Collision fatality of raptors in wind farms does not depend on raptor abundance. J Appl Ecol 45:1695–1703

    Article  Google Scholar 

  • Drewitt AL, Langston RHW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42

    Article  Google Scholar 

  • Dussert C, Rasigni M, Palmari J, Rasigni G, Llebaria A, Marty F (1987) Minimal spanning tree analysis of biological structures. J Theor Biol 125:317–323

    Article  PubMed  CAS  Google Scholar 

  • Evered DS (1990) Measures of wing area and wing span from wing formula data. Auk 107:784–787

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Fargione J, Kiesecker J, Slaats MJ, Olimb S (2012) Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development. PLoS One 7:e41468

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, de Lucas M, Janss GFE, Casado E, Muñoz AR, Bechard MJ, Calabuig CP (2012) Weak relationship between risk assessment studies and recorded mortality in wind farms. J Appl Ecol 49:38–46

    Article  Google Scholar 

  • Fonseca CR, Ganade G (2001) Species functional redundancy, random extinctions and the stability of ecosystems. J Ecol 89:118–125

    Article  Google Scholar 

  • García-Romero A, Oropeza-Orozco O, Galicia-Sarmiento L (2005) Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, México. Environ Manag 34:768–785

    Article  Google Scholar 

  • Gerhold P, Pärtel M, Tackenberg O, Hennekens SM, Bartish I, Schaminée JHJ, Fergus AJF, Ozinaga WA, Prinzing A (2011) Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. Am Nat 177:668–680

    Article  PubMed  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington

    Google Scholar 

  • Gotelli NJ, Ulrich W (2012) Statistical challenges in null model analysis. Oikos 121:171–180

    Article  Google Scholar 

  • Griffiths CS, Barrowclough GF, Groth JG, Mertz L (2004) Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data. Mol Phylogenet Evol 32:101–109

    Article  PubMed  CAS  Google Scholar 

  • Gross R, Leach M, Bauen A (2003) Progress in renewable energy. Environ Int 29:105–122

    Article  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hartmann K, André J (2013) Should evolutionary history guide conservation? Biodivers Conserv 22:449–458

    Article  Google Scholar 

  • Hebert PDN, Ratnasingham S, de Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270:S96–S99

    Article  CAS  Google Scholar 

  • Heemsbergen DA, Berg MP, Loreau M, van Hal JR, Faber JH, Verhoef HA (2004) Processes explained by interspecific functional dissimilarity. Science 306:1019–1020

    Article  PubMed  CAS  Google Scholar 

  • Holbrook KM, Loiselle BA (2009) Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): does hunting of large vertebrates limit seed removal? Ecology 90:1449–1455

    Article  PubMed  CAS  Google Scholar 

  • Horn JW, Arnett EB, Kunz TH (2008) Behavioral responses of bats to operating wind turbines. J Wildl Manag 72:123–132

    Article  Google Scholar 

  • Howell SNG, Webb S (1995) A guide to the birds of Mexico and northern Central America. Oxford University Press, New York

    Google Scholar 

  • Huidobro L, Morrone JJ, Villalobos JL, Álvarez F (2006) Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. J Biogeogr 33:731–741

    Article  Google Scholar 

  • Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill R (2006) Bird migration studies and potential collision risk with offshore wind turbines. Ibis 148:90–109

    Article  Google Scholar 

  • Janss GFE (2000) Avian mortality from power lines: a morphologic approach of a species-specific mortality. Biol Conserv 95:353–359

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  PubMed  CAS  Google Scholar 

  • Kuvlesky WP Jr, Brennan LA, Morrison ML, Boydston K, Ballard BM, Bryant FC (2007) Wind energy development and wildlife conservation: challenges and opportunities. J Wildl Manag 71:2487–2498

    Article  Google Scholar 

  • Martin GR (2011) Understanding bird collisions with man-made objects: a sensory ecology approach. Ibis 153:239–254

    Article  Google Scholar 

  • Martínez-Abraín A, Crespo J, Berdugo M, Gutiérrez L, Lafuente A, Mañas A, de Miguel JM (2012) Causes of human impact to protected vertebrate wildlife parallel long-term socio-economical changes in Spain. Anim Conserv. doi:10.1111/j.1469-1795.2012.00599.x

    Google Scholar 

  • Minderman J, Pendlebury CJ, Pearce-Higgins JW, Park KJ (2012) Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity. PLoS One 7:e41177

    Article  PubMed  CAS  Google Scholar 

  • Morgado E, Günther B, Gonzalez U (1987) On the allometry of wings. Rev Chil Hist Nat 60:71–79

    Google Scholar 

  • Mouquet N, Devictor V, Meynard CN, Munoz F, Bersier LF, Chave J, Couteron P, Dalecky A, Fontaine C, Gravel D, Hardy OJ, Jabot F, Lavergne S, Leibold M, Mouillot D, Münkemüller T, Pavoine S, Prinzing A, Rodrigues AS, Rohr RP, Thébault E, Thuiller W (2012) Ecophylogenetics: advances and perspectives. Bio Rev Camb Philos Soc. doi:10.1111/j.1469-185X.2012.00224.x

    Google Scholar 

  • Mwangi PN, Schmitz M, Scherber C, Roscher C, Schumacher J, Scherer-Lorenzen M, Weisser WW, Schmid B (2007) J Ecol 95:65–78

    Article  Google Scholar 

  • Norberg U (1994) Wing design, flight performance, and habitat use in bats. In: Wainwright PC, Reilly SM (eds) Ecological morphology. University of Chicago Press, Chicago, pp 205–239

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O′Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17-8. http://CRAN.R-project.org/package=vegan. Accessed Nov 2011

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    Article  PubMed  Google Scholar 

  • Peres CA (2000) Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conserv Biol 14:240–253

    Article  Google Scholar 

  • Proches S, Wilson JRU, Richardson DM, Rejmánek M (2008) Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr 15:5–10

    Google Scholar 

  • Ricklefs RE (2012) Species richness and morphological diversity of passerine birds. Proc Natl Acad Sci USA 109:14482–14486

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs RE, Miles DB (1994) Ecological an evolutionary inferences from morphology: an ecological perspective. In: Wainwright PC, Reilly SM (eds) Ecological morphology. University of Chicago Press, Chicago, pp 13–41

    Google Scholar 

  • Ricklefs RE, Travis J (1980) A morphological approach to the study of avian community organization. Auk 97:321–338

    Google Scholar 

  • Santos BA, Arroyo-Rodríguez V, Moreno CE, Tabarelli M (2010) Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest. PLoS One 5:e12625

    Article  PubMed  Google Scholar 

  • Santos H, Rodrigues L, Jones G, Rebelo H (2013) Using species distribution modelling to predict bat fatality risk at wind farms. Biol Conserv 157:178–186

    Article  Google Scholar 

  • Sibley DA (2000) National Audubon Society the Sibley guide to birds. Alfred A Knopf, New York

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed Nov 2011

  • Tennekes H (1996) The simple science of flight: from insects to jumbo jets. MIT Press, Cambridge

    Google Scholar 

  • Villegas-Patraca R, Macias-Sanchez S, MacGregor-Fors I, Munoz-Robles C (2012) Scavenger removal: bird and bat carcass persistence in a tropical wind farm. Acta Oecol 43:121–125

    Article  Google Scholar 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Weiser MD, Kaspari M (2006) Ecological morphospace of New World ants. Ecol Entomol 31:131–142

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, Davis CC (2008) Phylogenetic patterns of species loss in Thoreau′s woods are driven by climate change. Proc Natl Acad Sci USA 105:17029–17033

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank to Jaime Gasca, Jorge Schondube, and Fabricio Villalobos for providing useful comments throughout the entire research, and the INECOL staff which helped with field work. Adolfo Navarro and Patricia Escalante allowed the access to bird collections. L. H.-A. was supported by Consejo Nacional de Ciencia y Tecnología Grant for master studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonel Herrera-Alsina.

Appendix

Appendix

See Table 3.

Table 3 Species encountered flying in the risk zone and species with registered collisions showing which species match their morphology with at least one trait associated with increased risk of collision

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera-Alsina, L., Villegas-Patraca, R., Eguiarte, L.E. et al. Bird communities and wind farms: a phylogenetic and morphological approach. Biodivers Conserv 22, 2821–2836 (2013). https://doi.org/10.1007/s10531-013-0557-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0557-6

Keywords

Navigation