Skip to main content

Advertisement

Log in

Assessing the vulnerability of European butterflies to climate change using multiple criteria

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Vulnerability of 100 European butterfly species to climate change was assessed using 13 different criteria and data on species distributions, climate, land cover and topography from 1,608 grid squares 30′ × 60′ in size, and species characteristics increasing the susceptibility to climate change. Four bioclimatic model-based criteria were developed for each species by comparing the present-day distribution and climatic suitability of the occupied grid cells with projected distribution and suitability in the future using the HadCM3-A2 climate scenario for 2051–2080. The proportions of disadvantageous land cover types (bare areas, water, snow and ice, artificial surfaces) and cultivated and managed land in the occupied grid squares and their surroundings were measured to indicate the amount of unfavourable land cover and dispersal barriers for butterflies, and topographical heterogeneity to indicate the availability of potential climatic refugia. Vulnerability was also assessed based on species dispersal ability, geographical localization and habitat specialization. Northern European species appeared to be amongst the most vulnerable European butterflies. However, there is much species-to-species variation, and species appear to be threatened due to different combinations of critical characteristics. Inclusion of additional criteria, such as life-history species characteristics, topography and land cover to complement the bioclimatic model-based species vulnerability measures can significantly deepen the assessments of species susceptibility to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Bakkenes M, Alkemade J, Ihle F, Leemans R, Latour J (2002) Assessing the effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407

    Article  Google Scholar 

  • Beale CM, Lennon JJ, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc Natl Acad Sci USA 105:14908–14912

    Google Scholar 

  • Beaumont LJ, Hughes L (2002) Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Glob Change Biol 8:954–971

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Modell 186:250–269

    Article  Google Scholar 

  • Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Change Biol 13:1368–1385

    Article  Google Scholar 

  • Bink FA (1992) Ecologische Atlas van de Dagvlinders van Noordwest-Europa. Schuyt, Haarlem

    Google Scholar 

  • Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban gradient. Biol Conserv 80:113–125

    Article  Google Scholar 

  • Bomhard B, Richardson DM, Donaldson JS, Hughes GO, Midgley GF, Raimondo DC, Rebelo AG, Rouget M, Thuiller W (2005) Potential impacts of future land use and climate change on the Red List status of the Proteaceae in the Cape Floristic Region, South Africa. Glob Change Biol 11:1452–1468

    Article  Google Scholar 

  • Bourn NAD, Thomas JA (2002) The challenge of conserving grassland insects at the margins of their range in Europe. Biol Conserv 104:285–292

    Article  Google Scholar 

  • Braschler B, Hill JK (2007) Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. J Anim Ecol 76:415–423

    Article  PubMed  Google Scholar 

  • Breiman L (2001) Random Forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Brereton R, Bennett S, Mansergh I (1995) Enhanced greenhouse climate change and its potential effect on selected fauna of south-eastern Australia: a trend analysis. Biol Conserv 72:339–354

    Article  Google Scholar 

  • Broennimann O, Thuiller W, Hughes G, Midgley GF, Alkemade JMR, Guisan A (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Change Biol 12:1079–1093

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  PubMed  Google Scholar 

  • Dennis RLH (1993) Butterflies and climate change. Manchester University Press, Manchester

    Google Scholar 

  • Dennis RLH, Shreeve TG (1991) Climatic change and the British butterfly fauna: opportunities and constrains. Biol Conserv 55:1–16

    Article  Google Scholar 

  • Erasmus BFN, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Change Biol 8:679–693

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:2255–2261

    Google Scholar 

  • Franco AMA, Hill JK, Kitchke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553

    Article  Google Scholar 

  • Gómez-Mendoza L, Arriaga L (2007) Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conserv Biol 21:1545–1555

    PubMed  Google Scholar 

  • Guralnick R (2007) Differential effects of past climate warming on mountain and flatland species distribution: a multispecies North American mammal assessment. Glob Ecol Biogeogr 16:14–23

    Article  Google Scholar 

  • Hannah L, Midgley G, Hughes G, Bomhard B (2005) The view from the Cape: extinction risk, protected areas, and climate change. Bioscience 55:231–242

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hill JK, Thomas CD, Huntley B (1999) Climate and habitat availability determine 20th century changes in a butterfly’s range margin. Proc R Soc Lond B 266:1197–1206

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B 269:2163–2171

    Article  CAS  Google Scholar 

  • Hill JK, Thomas CD, Huntley B (2003) Modeling present and potential future ranges of European butterflies using climate response surfaces. In: Bogs C, Watt W, Ehrlich P (eds) Butterflies: ecology and evolution taking flight. The University of Chicago Press, Chicago

    Google Scholar 

  • Hogsden KL, Hutchinson TC (2004) Butterfly assemblages along a human disturbance gradient in Ontario, Canada. Can J Zool 82:739–748

    Article  Google Scholar 

  • Huntley B (1998) The dynamic response of plants to environmental change and the resulting risks of extinction. In: Mace GM, Balmford A, Ginsberg JR (eds) Conservation in a changing world. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiguet F, Gadot A-S, Julliard R, Newson SE, Couvet D (2007) Climate envelope, life history traits and the resilience of birds facing global change. Glob Change Biol 13:1–13

    Article  Google Scholar 

  • Kerr JT, Cihlar J (2004) Patterns and causes of species endangerment in Canada. Ecol Appl 14:743–753

    Article  Google Scholar 

  • Kocher SD, Williams EH (2000) The diversity and abundance of North American butterflies vary with habitat disturbance and geography. J Biogeogr 27:785–794

    Article  Google Scholar 

  • Komonen A, Grapputo A, Kaitala V, Kotiaho J, Päivinen J (2004) The role of niche breadth, resource availability and range position on the life history of butterflies. Oikos 105:41–54

    Article  Google Scholar 

  • Konvicka M, Fric Z, Benes J (2006) Butterfly extinctions in European states: do socio-economic conditions matter more than physical geography? Glob Ecol Biogeogr 15:82–92

    Article  Google Scholar 

  • Kudrna O (2002) The distribution atlas of European butterflies. Oedippus 20:1–342

    Google Scholar 

  • Kühn I, Sykes MT, Berry PM, Thuiller W, Piper JM, Nigmann U, Araújo MB, Balletto E, Bonelli S, Cabeza M, Guisan A, Hickler T, Klotz S, Metzger M, Midgley G, Musche M, Olofsson J, Paterson JS, Penev L, Rickebusch S, Rounsevell MDAR, Schweiger O, Wilson E, Settele J (2008) MACIS: Minimisation of and Adaptation to Climate Change Impacts on BiodiverSity. GAIA–Ecol Perspect Sci Soc 17/4:393–395

  • Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range shifts: model differences and model reliability. Glob Change Biol 12:1–17

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Luoto M, Heikkinen RK (2008) Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models. Glob Change Biol 14:483–494

    Article  Google Scholar 

  • Luoto M, Pöyry J, Heikkinen RK, Saarinen K (2005) Uncertainty of bioclimate envelope models based on geographical distribution of species. Glob Ecol Biogeogr 14:575–584

    Google Scholar 

  • Luoto M, Heikkinen RK, Pöyry J, Saarinen K (2006) Determinants of biogeographical distribution of butterflies in boreal regions. J Biogeogr 33:1764–1778

    Google Scholar 

  • Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Google Scholar 

  • Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009a) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Modell (in press)

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009b) Evaluation of consensus methods in predictive species distribution modelling. Divers Distr 15:59–69

    Article  Google Scholar 

  • McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151

    Google Scholar 

  • Menéndez R (2007) How are insects responding to global warming? Tijdschrift voor Entomologie 150:355–365

    Google Scholar 

  • Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol Conserv 112:87–97

    Article  Google Scholar 

  • Midgley GF, Hughes GO, Thuiller W, Rebelo AG (2006) Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Divers Distrib 12:555–562

    Article  Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New MG (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper No. 55, pp 1–30

  • Mustin K, Sutherland WJ, Gill JA (2007) The complexity of predicting climate-induced ecological impacts. Climate Res 35:165–175

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25

    Article  Google Scholar 

  • Nichols WF, Killingbeck KT, August PV (1998) The influence of geomorphological heterogeneity on biodiversity. II. A landscape perspective. Conserv Biol 12:371–379

    Article  Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006a) Quantifying components of risk for European woody species under climate change. Glob Change Biol 12:1788–1799

    Article  Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006b) Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob Ecol Biogeogr 15:395–405

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TE, Lees DC (2006) Model-based uncertainty in species’ range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peters RL, Darling JS (1985) The greenhouse effect and nature reserves. Bioscience 35:707–717

    Article  Google Scholar 

  • Peterson AT (2003) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Change Biol 9:647–655

    Article  Google Scholar 

  • Peterson AT, Martínez-Meyer E, González-Salazar C, Hall PW (2004) Modeled climate change effects on distributions of Canadian butterfly species. Can J Zool 82:851–858

    Article  Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, Saarinen K (2008) Species traits are associated with the quality of bioclimatic models. Glob Ecol Biogeogr 17:403–414

    Google Scholar 

  • Pöyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish butterflies. Glob Change Biol 15:732–743

    Article  Google Scholar 

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199

    Article  Google Scholar 

  • R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ruggiero A, Hawkins BA (2008) Why do mountains support so many species of birds? Ecography 31:306–315

    Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89:3472–3479

    Article  PubMed  Google Scholar 

  • Settele J, Hammen V, Hulme P, Karlson U, Klotz S, Kotarac M, Kunin WE, Marion G, O’Connor M, Petanidou T, Peterson K, Potts S, Pritchard H, Pysek P, Rounsevell M, Spangenberg J, Steffan-Dewenter I, Sykes MT, Vighi M, Zobel M, Kühn I (2005) ALARM—assessing large-scale environmental risks for biodiversity with tested methods. GAIA 14(1):69–72

    Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kühn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kühn E, van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic Risk Atlas of European Butterflies. BioRisk 1:1–710. doi:10.3897/biorisk.1

    Google Scholar 

  • Shreeve TG (1995) Butterfly mobility. In: Pullin AS (ed) Ecology and conservation of butterflies. Chapman & Hall, London

    Google Scholar 

  • Skov F, Svenning J-C (2004) Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27:366–380

    Article  Google Scholar 

  • Stefanescu C, Herrando S, Paramo F (2004) Butterfly species richness in the north-west Mediterranean Basin: the role of natural and human-induced factors. J Biogeogr 31:905–915

    Article  Google Scholar 

  • Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Jordano D, Lewis OT, Hill JK, Sutcliffe OL, Thomas JA (1998) Butterfly distributional patterns, processes and conservation. In: Mace GM, Balmford A, Ginsberg JR (eds) Conservation in a changing world. Cambridge University Press, Cambridge

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W (2003) BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB (2005a) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005b) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Change Biol 12:424–440

    Article  Google Scholar 

  • Tshikolovets VV (2003) Butterflies of Eastern Europe, Urals and Caucasus: an illustrated guide. National Academy of Sciences of Ukraine, National Museum of Natural History, Zoological Museum, Kyiv/Brno

    Google Scholar 

  • van Swaay CAM (2002) The importance of calcareous grasslands for butterflies in Europe. Biol Conserv 104:315–318

    Article  Google Scholar 

  • van Swaay C, Warren M, Lois G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209

    Article  Google Scholar 

  • Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353

    Article  Google Scholar 

  • Walker KJ, Preston CD (2006) Ecological predictors of extinction risk in the Flora of Lowland England, UK. Biodivers Conserv 15:1913–1942

    Article  Google Scholar 

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  PubMed  CAS  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146

    Article  Google Scholar 

Download references

Acknowledgements

Zdravko Kolev helped with the assessment of butterfly species dispersal ability for S European species. Different parts of this research were funded by the EC FP6 Integrated Project ALARM (Settele et al. 2005; GOCE-CT-2003-506675). MM was funded by the Academy of Finland (project grant 116544). WT was partly funded by the EU FP6 MACIS project (Kühn et al. 2008; Minimisation of and Adaptation to Climate change: Impacts on biodiversity, contract No.: 044399) and EU FP6 ECOCHANGE integrated project (Challenges in assessing and forecasting biodiversity and ecosystem changes in Europe). M. Bailey helped with correction of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risto K. Heikkinen.

Appendix

Appendix

See Table 3.

Table 3 Spearman rank correlations for the 13 vulnerability criteria (four bioclimatic model-based criteria, four land cover-based criteria, topographical heterogeneity of the occupied grid cells, and four species characteristics potentially increasing species susceptibility) used in assessing the vulnerability of 100 European butterfly species to climate change impacts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikkinen, R.K., Luoto, M., Leikola, N. et al. Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers Conserv 19, 695–723 (2010). https://doi.org/10.1007/s10531-009-9728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9728-x

Keywords

Navigation